

Debian Developer's Reference

Developer's Reference Team <developers-reference@packages.debian.org>

	Copyright © 2019 - 2025 Holger Levsen

	Copyright © 2015 - 2020 Hideki Yamane

	Copyright © 2008 - 2015 Lucas Nussbaum

	Copyright © 2004 - 2007 Andreas Barth

	Copyright © 2002 - 2009 Raphaël Hertzog

	Copyright © 1998 - 2003 Adam Di Carlo

	Copyright © 1997 - 1998 Christian Schwarz

This manual is free software; you may redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation; either version 2, or (at your option) any later version.

This is distributed in the hope that it will be useful, but without any
warranty; without even the implied warranty of merchantability or fitness for a
particular purpose. See the GNU General Public License for more details.

A copy of the GNU General Public License is available as
/usr/share/common-licenses/GPL-2 in the Debian distribution or on the World
Wide Web at the GNU web site. You can also obtain it by writing to the Free
Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301, USA.

This is Debian Developer's Reference version 14.1,
released on 2025-11-02.

If you want to print this reference, you should use the pdf version. This
manual is also available in some other languages.

	1. Scope of This Document

	2. Applying to Become a Member
	2.1. Getting started

	2.2. Debian mentors and sponsors

	2.3. Registering as a Debian member

	3. Debian Developer's Duties
	3.1. Package Maintainer's Duties
	3.1.1. Work towards the next stable release

	3.1.2. Maintain packages in stable

	3.1.3. Manage release-critical bugs

	3.1.4. Coordination with upstream developers

	3.2. Administrative Duties
	3.2.1. Maintaining your Debian information

	3.2.2. Maintaining your public key

	3.2.3. Voting

	3.2.4. Going on vacation gracefully

	3.2.5. Retiring

	3.2.6. Returning after retirement

	4. Resources for Debian Members
	4.1. Mailing lists
	4.1.1. Basic rules for use

	4.1.2. Core development mailing lists

	4.1.3. Special lists

	4.1.4. Requesting new development-related lists

	4.2. IRC channels

	4.3. Documentation

	4.4. Debian machines
	4.4.1. The bugs server

	4.4.2. The ftp-master server

	4.4.3. The www-master server

	4.4.4. The people web server

	4.4.5. salsa.debian.org: Git repositories and collaborative development platform

	4.4.6. GitHub.com: Submitting pull requests to upstream repositories

	4.4.7. chroots to different distributions

	4.5. The Developers Database

	4.6. The Debian archive
	4.6.1. Sections

	4.6.2. Architectures

	4.6.3. Packages

	4.6.4. Distributions
	4.6.4.1. Stable, testing, and unstable

	4.6.4.2. More information about the testing distribution

	4.6.4.3. Experimental

	4.6.5. Release code names

	4.7. Debian mirrors

	4.8. The Incoming system

	4.9. Package information
	4.9.1. On the web

	4.9.2. The dak ls utility

	4.10. The Debian Package Tracker

	4.11. Developer's packages overview

	4.12. Debian's FusionForge installation: Alioth

	4.13. Goodies for Debian Members

	5. Managing Packages
	5.1. New packages

	5.2. Recording changes in the package

	5.3. Testing the package

	5.4. Layout of the source package

	5.5. Picking a distribution
	5.5.1. Special case: uploads to the stable and oldstable distributions

	5.5.2. Special case: the stable-updates suite

	5.5.3. Special case: uploads to testing/testing-proposed-updates

	5.6. Uploading a package
	5.6.1. Source and binary uploads

	5.6.2. Uploading to ftp-master

	5.6.3. Delayed uploads

	5.6.4. Security uploads

	5.6.5. Other upload queues

	5.6.6. Notifications

	5.7. Specifying the package section, subsection and priority

	5.8. Handling bugs
	5.8.1. Monitoring bugs

	5.8.2. Responding to bugs

	5.8.3. Bug housekeeping

	5.8.4. When bugs are closed by new uploads

	5.8.5. Handling security-related bugs
	5.8.5.1. Debian Security Tracker

	5.8.5.2. Confidentiality

	5.8.5.3. Security Advisories

	5.8.5.4. Preparing packages to address security issues

	5.8.5.5. Uploading the fixed package

	5.9. Moving, removing, renaming, orphaning, adopting, and reintroducing packages
	5.9.1. Moving packages

	5.9.2. Removing packages
	5.9.2.1. Removing packages from Incoming

	5.9.3. Replacing or renaming packages

	5.9.4. Orphaning a package

	5.9.5. Adopting a package

	5.9.6. Reintroducing packages

	5.10. Porting and being ported
	5.10.1. Being kind to porters

	5.10.2. Guidelines for porter uploads
	5.10.2.1. Recompilation or binary-only NMU

	5.10.2.2. When to do a source NMU if you are a porter

	5.10.3. Porting infrastructure and automation
	5.10.3.1. Mailing lists and web pages

	5.10.3.2. Porter tools

	5.10.3.3. wanna-build

	5.10.4. When your package is not portable

	5.10.5. Marking non-free packages as auto-buildable

	5.11. Non-Maintainer Uploads (NMUs)
	5.11.1. When and how to do an NMU

	5.11.2. NMUs and debian/changelog

	5.11.3. Using the DELAYED/ queue

	5.11.4. NMUs from the maintainer's point of view

	5.11.5. Source NMUs vs Binary-only NMUs (binNMUs)

	5.11.6. NMUs vs QA uploads

	5.11.7. NMUs vs team uploads

	5.12. Package Salvaging
	5.12.1. When a package is eligible for package salvaging

	5.12.2. How to salvage a package

	5.13. Collaborative maintenance

	5.14. The testing distribution
	5.14.1. Basics

	5.14.2. Updates from unstable
	5.14.2.1. Out-of-date

	5.14.2.2. Removals from testing

	5.14.2.3. Circular dependencies

	5.14.2.4. Influence of package in testing

	5.14.2.5. Details

	5.14.3. Direct updates to testing

	5.14.4. Frequently asked questions
	5.14.4.1. What are release-critical bugs, and how do they get counted?

	5.14.4.2. How could installing a package into testing possibly break other packages?

	5.15. The Stable backports archive
	5.15.1. Basics

	5.15.2. Exception to the testing-first rule

	5.15.3. Who can maintain packages in the stable-backports archive?

	5.15.4. When can one start uploading to stable-backports?

	5.15.5. How long must a package be maintained when uploaded to stable-backports?

	5.15.6. How often shall one upload to stable-backports?

	5.15.7. How can one learn more about backporting?

	6. Best Packaging Practices
	6.1. Best practices for debian/rules
	6.1.1. Helper scripts

	6.1.2. Multiple binary packages

	6.2. Best practices for debian/control
	6.2.1. General guidelines for package descriptions

	6.2.2. The package synopsis, or short description

	6.2.3. The long description

	6.2.4. Upstream home page

	6.2.5. Version Control System location
	6.2.5.1. Vcs-Browser

	6.2.5.2. Vcs-*

	6.3. Best practices for debian/changelog
	6.3.1. Writing useful changelog entries

	6.3.2. Selecting the upload urgency

	6.3.3. Common misconceptions about changelog entries

	6.3.4. Common errors in changelog entries

	6.3.5. Supplementing changelogs with NEWS.Debian files

	6.4. Best practices around security

	6.5. Best practices for maintainer scripts

	6.6. Configuration management with debconf
	6.6.1. Do not abuse debconf

	6.6.2. General recommendations for authors and translators
	6.6.2.1. Write correct English

	6.6.2.2. Be kind to translators

	6.6.2.3. Unfuzzy complete translations when correcting typos and spelling

	6.6.2.4. Do not make assumptions about interfaces

	6.6.2.5. Do not use first person

	6.6.2.6. Be gender neutral

	6.6.3. Templates fields definition
	6.6.3.1. Type

	6.6.3.2. Description: short and extended description

	6.6.3.3. Choices

	6.6.3.4. Default

	6.6.4. Template fields specific style guide
	6.6.4.1. Type field

	6.6.4.2. Description field

	6.6.4.3. Choices field

	6.6.4.4. Default field

	6.7. Internationalization
	6.7.1. Handling debconf translations

	6.7.2. Internationalized documentation

	6.8. Best practices for debian/patches

	6.9. Common packaging situations
	6.9.1. Packages using autoconf/automake

	6.9.2. Libraries

	6.9.3. Documentation

	6.9.4. Specific types of packages

	6.9.5. Architecture-independent data

	6.9.6. Needing a certain locale during build

	6.9.7. Make transition packages deborphan compliant

	6.9.8. Best practices for .orig.tar.{gz,bz2,xz} files
	6.9.8.1. Pristine source

	6.9.8.2. Repackaged upstream source

	6.9.8.3. Changing binary files

	6.9.9. Best practices for debug packages
	6.9.9.1. Automatically generated debug packages

	6.9.9.2. Manual -dbg packages

	6.9.10. Best practices for meta-packages

	7. Beyond Packaging
	7.1. Bug reporting
	7.1.1. Reporting lots of bugs at once (mass bug filing)
	7.1.1.1. Usertags

	7.2. Quality Assurance effort
	7.2.1. Daily work

	7.2.2. Bug squashing parties

	7.3. Contacting other maintainers

	7.4. Dealing with inactive and/or unreachable maintainers

	7.5. Interacting with prospective Debian developers
	7.5.1. Sponsoring packages
	7.5.1.1. Sponsoring a new package

	7.5.1.2. Sponsoring an update of an existing package

	7.5.2. Granting upload permissions to DMs

	7.5.3. Advocating new developers

	7.5.4. Handling new maintainer applications

	8. Internationalization and Translations
	8.1. How translations are handled within Debian

	8.2. I18N & L10N FAQ for maintainers
	8.2.1. How to get a given text translated

	8.2.2. How to get a given translation reviewed

	8.2.3. How to get a given translation updated

	8.2.4. How to handle a bug report concerning a translation

	8.3. I18N & L10N FAQ for translators
	8.3.1. How to help the translation effort

	8.3.2. How to provide a translation for inclusion in a package

	8.4. Best current practice concerning l10n

Appendix

	1. Overview of Debian Maintainer Tools
	1.1. Core tools
	1.1.1. dpkg-dev

	1.1.2. debconf

	1.1.3. fakeroot

	1.2. Package lint tools
	1.2.1. lintian

	1.2.2. lintian-brush

	1.2.3. piuparts

	1.2.4. debdiff

	1.2.5. diffoscope

	1.2.6. duck

	1.2.7. adequate

	1.2.8. i18nspector

	1.2.9. cme

	1.2.10. licensecheck

	1.2.11. blhc

	1.3. Helpers for debian/rules
	1.3.1. debhelper

	1.3.2. dh-make

	1.3.3. equivs

	1.4. Package builders
	1.4.1. git-buildpackage

	1.4.2. debootstrap

	1.4.3. pbuilder

	1.4.4. sbuild

	1.5. Package uploaders
	1.5.1. dupload

	1.5.2. dput

	1.5.3. dcut

	1.6. Maintenance automation
	1.6.1. devscripts

	1.6.2. reportbug

	1.6.3. autotools-dev

	1.6.4. dpkg-repack

	1.6.5. alien

	1.6.6. dpkg-dev-el

	1.6.7. dpkg-depcheck

	1.6.8. debputy

	1.7. Porting tools
	1.7.1. dpkg-cross

	1.8. Documentation and information
	1.8.1. debian-policy

	1.8.2. doc-debian

	1.8.3. developers-reference

	1.8.4. maint-guide

	1.8.5. debmake-doc

	1.8.6. packaging-tutorial

	1.8.7. how-can-i-help

	1.8.8. docbook-xml

	1.8.9. debiandoc-sgml

	1.8.10. debian-keyring

	1.8.11. debian-el

1. Scope of This Document

The purpose of this document is to provide an overview of the
recommended procedures and the available resources for Debian developers
and maintainers.

The procedures discussed within include how to become a member
(Applying to Become a Member); how to create new packages
(New packages) and how to upload packages (Uploading a package);
how to handle bug reports (Handling bugs); how to move,
remove, or orphan packages (Moving, removing, renaming, orphaning, adopting, and reintroducing packages); how to port
packages (Porting and being ported); and how and when to do interim releases
of other maintainers' packages (Non-Maintainer Uploads (NMUs)).

The resources discussed in this reference include the mailing lists
(Mailing lists) and servers (Debian machines); a
discussion of the structure of the Debian archive (The Debian archive);
explanation of the different servers which accept package uploads
(Uploading to ftp-master); and a discussion of resources which can
help maintainers with the quality of their packages (Overview of Debian Maintainer Tools).

It should be clear that this reference does not discuss the technical
details of Debian packages nor how to generate them. Nor does this
reference detail the standards to which Debian software must comply. All
of such information can be found in the Debian Policy
Manual [https://www.debian.org/doc/debian-policy/].

Furthermore, this document is not an expression of formal policy. It
contains documentation for the Debian system and generally agreed-upon
best practices. Thus, it is not what is called a normative document.

2. Applying to Become a Member

2.1. Getting started

So, you've read all the documentation, you've gone through the Debian
New Maintainers' Guide [https://www.debian.org/doc/maint-guide/] (or
its successor, Guide for Debian
Maintainers [https://www.debian.org/doc/manuals/debmake-doc/]),
understand what everything in the hello example package is for, and
you're about to Debianize your favorite piece of software. How do you
actually become a Debian developer so that your work can be incorporated
into the Project?

Firstly, subscribe to debian-devel@lists.debian.org if you haven't
already. Send the word subscribe in the Subject of an email to
debian-devel-REQUEST@lists.debian.org. In case of problems, contact
the list administrator at listmaster@lists.debian.org. More
information on available mailing lists can be found in
Mailing lists. debian-devel-announce@lists.debian.org is
another list, which is mandatory for anyone who wishes to follow
Debian's development.

You should subscribe and lurk (that is, read without posting) for a bit
before doing any coding, and you should post about your intentions to
work on something to avoid duplicated effort.

Another good list to subscribe to is
debian-mentors@lists.debian.org. See Debian mentors and sponsors for details. The IRC channel #debian can also
be helpful; see IRC channels.

When you know how you want to contribute to Debian, you should get in
contact with existing Debian maintainers who are working on similar
tasks. That way, you can learn from experienced developers. For example,
if you are interested in packaging existing software for Debian, you
should try to get a sponsor. A sponsor will work together with you on
your package and upload it to the Debian archive once they are happy
with the packaging work you have done. You can find a sponsor by mailing
the debian-mentors@lists.debian.org mailing list, describing your
package and yourself and asking for a sponsor (see Sponsoring packages
and https://wiki.debian.org/DebianMentorsFaq for more information
on sponsoring). On the other hand, if you are interested in porting
Debian to alternative architectures or kernels you can subscribe to port
specific mailing lists and ask there how to get started. Finally, if you
are interested in documentation or Quality Assurance (QA) work you can
join maintainers already working on these tasks and submit patches and
improvements.

One pitfall could be a too-generic local part in your email address: Terms
like mail, admin, root, master should be avoided, please see
https://www.debian.org/MailingLists/ for details.

2.2. Debian mentors and sponsors

The mailing list debian-mentors@lists.debian.org has been set up for
novice maintainers who seek help with initial packaging and other
developer-related issues. Every new developer is invited to subscribe to
that list (see Mailing lists for details).

Those who prefer one-on-one help (e.g., via private email) should also
post to that list and an experienced developer will volunteer to help.

In addition, if you have some packages ready for inclusion in Debian,
but are waiting for your new member application to go through, you might
be able find a sponsor to upload your package for you. Sponsors are
people who are official Debian Developers, and who are willing to
criticize and upload your packages for you. Please read the
debian-mentors FAQ at https://wiki.debian.org/DebianMentorsFaqfirst.

If you wish to be a mentor and/or sponsor, more information is available
in Interacting with prospective Debian developers.

2.3. Registering as a Debian member

Before you decide to register with Debian, you will need to read all the
information available at the New Members
Corner [https://www.debian.org/devel/join/newmaint]. It describes in
detail the preparations you have to do before you can register to become
a Debian member. For example, before you apply, you have to read the
Debian Social Contract [https://www.debian.org/social_contract].
Registering as a member means that you agree with and pledge to uphold
the Debian Social Contract; it is very important that member are in
accord with the essential ideas behind Debian. Reading the GNU
Manifesto [https://www.gnu.org/gnu/manifesto.html] would also be a
good idea.

The process of registering as a member is a process of verifying your
identity and intentions, and checking your technical skills. As the
number of people working on Debian has grown to over
1000 and our systems are used in several very
important places, we have to be careful about being compromised.
Therefore, we need to verify new members before we can give them
accounts on our servers and let them upload packages.

Before you actually register you should have shown that you can do
competent work and will be a good contributor. You show this by
submitting patches through the Bug Tracking System and having a package
sponsored by an existing Debian Developer for a while. Also, we expect
that contributors are interested in the whole project and not just in
maintaining their own packages. If you can help other maintainers by
providing further information on a bug or even a patch, then do so!

Registration requires that you are familiar with Debian's philosophy and
technical documentation. Furthermore, you need a OpenPGP key which has
been signed by an existing Debian maintainer. If your OpenPGP key is not
signed yet, you should try to meet a Debian Developer in person to get
your key signed. There's a Key Signing Coordination
page [https://wiki.debian.org/Keysigning] which should help you find
a Debian Developer close to you. (If there is no Debian Developer close
to you, alternative ways to pass the ID check may be permitted as an
absolute exception on a case-by-case-basis. See the identification
page [https://www.debian.org/devel/join/nm-step2] for more
information.)

If you do not have an OpenPGP key yet, generate one. Every developer
needs an OpenPGP key in order to sign and verify package uploads. You
should read the manual for the software you are using, since it has much
important information that is critical to its security. Many more
security failures are due to human error than to software failure or
high-powered spy techniques. See Maintaining your public key for more
information on maintaining your public key.

Debian uses the GNU Privacy Guard (package gnupg version 2 or
better) as its baseline standard. You can use some other implementation
of OpenPGP as well. Note that OpenPGP is an open standard based on RFC
9580 [https://www.rfc-editor.org/rfc/rfc9580.html].

Your key length must be greater than 2048 bits (4096
bits is preferred) [https://keyring.debian.org/creating-key.html];
there is no reason to use a smaller key, and doing so would be much
less secure.

If your public key isn't on a public key server such as
subkeys.pgp.net, please read the documentation available at NM Step
2: Identification [https://www.debian.org/devel/join/nm-step2]. That
document contains instructions on how to put your key on the public key
servers. The New Maintainer Group will put your public key on the
servers if it isn't already there.

Some countries restrict the use of cryptographic software by their
citizens. This need not impede one's activities as a Debian package
maintainer however, as it may be perfectly legal to use cryptographic
products for authentication, rather than encryption purposes. If you
live in a country where use of cryptography even for authentication is
forbidden then please contact us so we can make special arrangements.

To apply as a new member, you need an existing Debian Developer to
support your application (an advocate). After you have contributed
to Debian for a while, and you want to apply to become a registered
developer, an existing developer with whom you have worked over the past
months has to express their belief that you can contribute to Debian
successfully.

When you have found an advocate, have your OpenPGP key signed and have
already contributed to Debian for a while, you're ready to apply. You
can simply register on our application
page [https://nm.debian.org/newnm.php]. After you have signed up,
your advocate has to confirm your application. When your advocate has
completed this step you will be assigned an Application Manager who will
go with you through the necessary steps of the New Member process. You
can always check your status on the applications status
board [https://nm.debian.org/].

For more details, please consult New Members
Corner [https://www.debian.org/devel/join/newmaint] at the Debian web
site. Make sure that you are familiar with the necessary steps of the
New Member process before actually applying. If you are well prepared,
you can save a lot of time later on.

3. Debian Developer's Duties

3.1. Package Maintainer's Duties

As a package maintainer, you're supposed to provide high-quality
packages that are well integrated into the system and that adhere to the
Debian Policy.

3.1.1. Work towards the next stable release

Providing high-quality packages in unstable is not enough; most
users will only benefit from your packages when they are released as
part of the next stable release. You are thus expected to
collaborate with the release team to ensure your packages get included.

More concretely, you should monitor whether your packages are migrating
to testing (see The testing distribution). When the migration doesn't
happen after the test period, you should analyze why and work towards
fixing this. It might mean fixing your package (in the case of
release-critical bugs or failures to build on some architecture) but it
can also mean updating (or fixing, or removing from testing) other
packages to help complete a transition in which your package is
entangled due to its dependencies. The release team might provide you
some input on the current blockers of a given transition if you are not
able to identify them.

3.1.2. Maintain packages in stable

Most of the package maintainer's work goes into providing updated
versions of packages in unstable, but their job also entails taking
care of the packages in the current stable release.

While changes in stable are discouraged, they are possible. Whenever
a security problem is reported, you should collaborate with the security
team to provide a fixed version (see Handling security-related bugs). When bugs
of severity important (or more) are reported against the stable
version of your packages, you should consider providing a targeted fix.
You can ask the stable release team whether they would accept such
an update and then prepare a stable upload (see
Special case: uploads to the stable and oldstable distributions).

3.1.3. Manage release-critical bugs

Generally you should deal with bug reports on your packages as described
in Handling bugs. However, there's a special category of bugs
that you need to take care of — the so-called release-critical bugs (RC
bugs). All bug reports that have severity critical, grave or
serious make the package unsuitable for inclusion in the next
stable release. They can thus delay the Debian release (when they
affect a package in testing) or block migrations to testing
(when they only affect the package in unstable). In the worst
scenario, they will lead to the package's removal. That's why these bugs
need to be corrected as quickly as possible.

If, for any reason, you aren't able fix an RC bug in a package of yours
within 2 weeks (for example due to time constraints, or because it's
difficult to fix), you should mention it clearly in the bug report and
you should tag the bug help to invite other volunteers to chime in.
Be aware that RC bugs are frequently the targets of Non-Maintainer
Uploads (see Non-Maintainer Uploads (NMUs)) because they can block the testing
migration of many packages.

Lack of attention to RC bugs is often interpreted by the QA team as a
sign that the maintainer has disappeared without properly orphaning
their package. The MIA team might also get involved, which could result
in your packages being orphaned (see Dealing with inactive and/or unreachable maintainers).

3.1.4. Coordination with upstream developers

A big part of your job as Debian maintainer will be to stay in contact
with the upstream developers. Debian users will sometimes report bugs
that are not specific to Debian to our bug tracking system. These bug
reports should be forwarded to the upstream developers so that they can
be fixed in a future upstream release. Usually it is best if you can do
this, but alternatively, you may ask the bug submitter to do it.

While it's not your job to fix non-Debian specific bugs, you may freely
do so if you're able. When you make such fixes, be sure to pass them on
to the upstream maintainers as well. Debian users and developers will
sometimes submit patches to fix upstream bugs — you should evaluate and
forward these patches upstream.

In cases where a bug report is forwarded upstream, it may be helpful to
remember that the bts-link service can help with synchronizing states
between the upstream bug tracker and the Debian one.

If you need to modify the upstream sources in order to build a policy
compliant package, then you should propose a nice fix to the upstream
developers which can be included there, so that you won't have to modify
the sources of the next upstream version. Whatever changes you need,
always try not to fork from the upstream sources.

As most upstreams nowadays use git for version control, in most cases
git-buildpackage offers the most convenient way to create and maintain patches
in Debian that so they are submit upstream. For details, see git-buildpackage
man pages about using pq to write and test debian/patches as git
commits, and having git remote upstreamvcs to easily cherry-pick patches to
and from upstream git branches.

If you find that the upstream developers are or become hostile towards
Debian or the free software community, you may want to re-consider the
need to include the software in Debian. Sometimes the social cost to the
Debian community is not worth the benefits the software may bring.

3.2. Administrative Duties

A project of the size of Debian relies on some administrative
infrastructure to keep track of everything. As a project member, you
have some duties to ensure everything keeps running smoothly.

3.2.1. Maintaining your Debian information

There's a LDAP database containing information about Debian developers
at https://db.debian.org/. You should enter your information
there and update it as it changes. Most notably, make sure that the
address where your debian.org email gets forwarded to is always up to
date, as well as the address where you get your debian-private
subscription if you choose to subscribe there.

For more information about the database, please see The Developers Database.

3.2.2. Maintaining your public key

Be very careful with your private keys. Do not place them on any public
servers or multiuser machines, such as the Debian servers (see
Debian machines). Back your keys up; keep a copy offline.
Read the documentation that comes with your software; read the PGP
FAQ [http://www.cam.ac.uk.pgp.net/pgpnet/pgp-faq/] and OpenPGP Best
Practices [https://riseup.net/en/security/message-security/openpgp/best-practices].

You need to ensure not only that your key is secure against being
stolen, but also that it is secure against being lost. Generate and make
a copy (best also in paper form) of your revocation certificate; this is
needed if your key is lost.

If you add signatures to your public key, or add user identities, you
can update the Debian key ring by sending your key to the key server at
keyring.debian.org. Updates are processed at least once a month by
the debian-keyring package maintainers.

If you need to add a completely new key or remove an old key, you need
to get the new key signed by another developer. If the old key is
compromised or invalid, you also have to add the revocation certificate.
If there is no real reason for a new key, the Keyring Maintainers might
reject the new key. Details can be found at
https://keyring.debian.org/replacing_keys.html.

The same key extraction routines discussed in Registering as a Debian member
apply.

You can find a more in-depth discussion of Debian key maintenance in the
documentation of the debian-keyring package and the
https://keyring.debian.org/ site.

3.2.3. Voting

Even though Debian isn't really a democracy, we use a democratic process
to elect our leaders and to approve general resolutions. These
procedures are defined by the Debian
Constitution [https://www.debian.org/devel/constitution].

Other than the yearly leader election, votes are not routinely held, and
they are not undertaken lightly. Each proposal is first discussed on the
debian-vote@lists.debian.org mailing list and it requires several
endorsements before the project secretary starts the voting procedure.

You don't have to track the pre-vote discussions, as the secretary will
issue several calls for votes on
debian-devel-announce@lists.debian.org (and all developers are
expected to be subscribed to that list). Democracy doesn't work well if
people don't take part in the vote, which is why we encourage all
developers to vote. Voting is conducted via OpenPGP-signed/encrypted email
messages.

The list of all proposals (past and current) is available on the Debian
Voting Information [https://www.debian.org/vote/] page, along with
information on how to make, second and vote on proposals.

3.2.4. Going on vacation gracefully

It is common for developers to have periods of absence, whether those
are planned vacations or simply being buried in other work. The
important thing to notice is that other developers need to know that
you're on vacation so that they can do whatever is needed if a problem
occurs with your packages or other duties in the project.

Usually this means that other developers are allowed to NMU (see
Non-Maintainer Uploads (NMUs)) your package if a big problem (release critical bug,
security update, etc.) occurs while you're on vacation. Sometimes it's
nothing as critical as that, but it's still appropriate to let others
know that you're unavailable.

In order to inform the other developers, there are two things that you
should do. First send a mail to debian-private@lists.debian.org with
[VAC] prepended to the subject of your message [1] and state the period
of time when you will be on vacation. You can also give some special
instructions on what to do if a problem occurs.

The other thing to do is to mark yourself as on vacation in the The Developers Database (this information is only
accessible to Debian developers). Don't forget to remove the on vacation
flag when you come back!

Ideally, you should sign up at the OpenPGP coordination
pages [https://wiki.debian.org/Keysigning] when booking a holiday and
check if anyone there is looking for signing. This is especially
important when people go to exotic places where we don't have any
developers yet but where there are people who are interested in
applying.

3.2.5. Retiring

If you choose to leave the Debian project, you should make sure you do
the following steps:

	Orphan all your packages, as described in Orphaning a package.

	Remove yourself from uploaders for co- or team-maintained packages.

	If you received mails via a @debian.org e-mail alias (e.g.
press@debian.org) and would like to get removed, open a RT ticket for
the Debian System Administrators. Just send an e-mail to
admin@rt.debian.org with "Debian RT" somewhere in the subject
stating from which aliases you'd like to get removed.

	Please remember to also retire from teams, e.g. remove yourself from
team wiki pages or salsa groups.

	Use the link https://nm.debian.org/process/emeritus to log in to
nm.debian.org, request emeritus status and write a goodbye
message that will be automatically posted on debian-private.

Authentication to the NM site requires an SSO browser certificate.
You can generate them on https://sso.debian.org.

In the case you run into problems opening the retirement process
yourself, contact NM front desk using nm@debian.org

It is important that the above process is followed, because finding
inactive developers and orphaning their packages takes significant time
and effort.

3.2.6. Returning after retirement

A retired developer's account is marked as "emeritus" when the process
in Retiring is followed, and "removed" otherwise. Retired
developers with an "emeritus" account can get their account re-activated
as follows:

	Get access to an salsa account (either by remembering the
credentials for your old guest account or by requesting a new one as
described at SSO Debian wiki page [https://wiki.debian.org/DebianSingleSignOn#If_you_ARE_NOT_.28yet.29_a_Debian_Developer].

	Mail nm@debian.org for further instructions.

	Go through a shortened NM process (to ensure that the returning
developer still knows important parts of P&P and T&S).

Retired developers with a "removed" account need to go through full NM
again.

[1]
This is so that the message can be easily filtered by people who
don't want to read vacation notices.

4. Resources for Debian Members

In this chapter you will find a very brief roadmap of the Debian mailing
lists, the Debian machines which may be available to you as a member,
and all the other resources that are available to help you in your work.

4.1. Mailing lists

Much of the conversation between Debian developers (and users) is
managed through a wide array of mailing lists we host at
lists.debian.org. To find out more on how to subscribe or
unsubscribe, how to post and how not to post, where to find old posts
and how to search them, how to contact the list maintainers and see
various other information about the mailing lists, please read
https://www.debian.org/MailingLists/. This section will only
cover aspects of mailing lists that are of particular interest to
developers.

4.1.1. Basic rules for use

When replying to messages on the mailing list, please do not send a
carbon copy (CC) to the original poster unless they explicitly
request to be copied. Anyone who posts to a mailing list should read it
to see the responses.

Cross-posting (sending the same message to multiple lists) is
discouraged. As ever on the net, please trim down the quoting of
articles you're replying to. In general, please adhere to the usual
conventions for posting messages.

Please read the code of
conduct [https://www.debian.org/MailingLists/#codeofconduct] for more
information. The Debian Community
Guidelines [https://people.debian.org/~enrico/dcg/] are also worth
reading.

4.1.2. Core development mailing lists

The core Debian mailing lists that developers should use are:

	debian-devel-announce@lists.debian.org, used to announce
important things to developers. All developers are expected to be
subscribed to this list.

	debian-devel@lists.debian.org, used to discuss various
development related technical issues.

	debian-policy@lists.debian.org, where the Debian Policy is
discussed and voted on.

	debian-project@lists.debian.org, used to discuss various
non-technical issues related to the project.

There are other mailing lists available for a variety of special topics;
see https://lists.debian.org/ for a list.

4.1.3. Special lists

debian-private@lists.debian.org is a special mailing list for
private discussions amongst Debian developers. It is meant to be used
for posts which for whatever reason should not be published publicly. As
such, it is a low volume list, and users are urged not to use
debian-private@lists.debian.org unless it is really necessary.
Moreover, do not forward email from that list to anyone. Archives of
this list are not available on the web for obvious reasons, but you can
see them using your shell account on master.debian.org and looking
in the ~debian/archive/debian-private/ directory.

debian-email@lists.debian.org is a special mailing list used as a
grab-bag for Debian related correspondence such as contacting upstream
authors about licenses, bugs, etc. or discussing the project with others
where it might be useful to have the discussion archived somewhere.

4.1.4. Requesting new development-related lists

Before requesting a mailing list that relates to the development of a
package (or a small group of related packages), please consider if using
an alias (via a .forward-aliasname file on master.debian.org, which
translates into a reasonably nice you-aliasname@debian.org address) is
more appropriate.

If you decide that a regular mailing list on lists.debian.org is really
what you want, go ahead and fill in a request, following the
HOWTO [https://www.debian.org/MailingLists/HOWTO_start_list].

4.2. IRC channels

Several IRC channels are dedicated to Debian's development. They are
mainly hosted on the Open and free technology community
(OFTC) [https://www.oftc.net/] network. The irc.debian.org DNS
entry is an alias to irc.oftc.net.

The main channel for Debian in general is #debian. This is a large,
general-purpose channel where users can find recent news in the topic
and served by bots. #debian is for English speakers; there are also
#debian.de, #debian-fr, #debian-br and other similarly named
channels for speakers of other languages.

The main channel for Debian development is #debian-devel. It is a
very active channel; it will typically have a minimum of 150 people at
any time of day. It's a channel for people who work on Debian, it's not
a support channel (there's #debian for that). It is however open to
anyone who wants to lurk (and learn). Its topic is commonly full of
interesting information for developers.

Since #debian-devel is an open channel, you should not speak there
of issues that are discussed in debian-private@lists.debian.org.
There's another channel for this purpose, it's called
#debian-private and it's protected by a key. This key is available
at master.debian.org:~debian/misc/irc-password.

There are other additional channels dedicated to specific subjects.
#debian-bugs is used for coordinating bug squashing parties.
#debian-boot is used to coordinate the work on the debian-installer.
#debian-doc is occasionally used to talk about documentation, like
the document you are reading. Other channels are dedicated to an
architecture or a set of packages: #debian-kde, #debian-dpkg,
#debian-perl, #debian-python...

Some non-English developers' channels exist as well, for example
#debian-devel-fr for French speaking people interested in Debian's
development.

Channels dedicated to Debian also exist on other IRC networks.

4.3. Documentation

This document contains a lot of information which is useful to Debian
developers, but it cannot contain everything. Most of the other
interesting documents are linked from The Developers'
Corner [https://www.debian.org/devel/]. Take the time to browse all
the links; you will learn many more things.

4.4. Debian machines

Debian has several computers working as servers, most of which serve
critical functions in the Debian project. Most of the machines are used
for porting activities, and they all have a permanent connection to the
Internet.

Some of the machines are available for individual developers to use, as
long as the developers follow the rules set forth in the Debian Machine
Usage Policies [https://www.debian.org/devel/dmup].

Generally speaking, you can use these machines for Debian-related
purposes as you see fit. Please be kind to system administrators, and do
not use up tons and tons of disk space, network bandwidth, or CPU
without first getting the approval of the system administrators. Usually
these machines are run by volunteers.

Please take care to protect your Debian passwords and SSH keys installed
on Debian machines. Avoid login or upload methods which send passwords
over the Internet in the clear, such as Telnet, FTP, POP etc.

Please do not put any material that doesn't relate to Debian on the
Debian servers, unless you have prior permission.

The current list of Debian machines is available at
https://db.debian.org/machines.cgi. That web page contains
machine names, contact information, information about who can log in,
SSH keys etc.

If you have a problem with the operation of a Debian server, and you
think that the system operators need to be notified of this problem, you
can check the list of open issues in the DSA (Debian System
Administration) Team's queue of our request tracker at
https://rt.debian.org/ (you can login with user "debian", its
password is available at
master.debian.org:~debian/misc/rt-password). To report a new problem
in the request tracker, simply send a mail to admin@rt.debian.org
and make sure to put the string "Debian RT" somewhere in the subject. To
contact the DSA team by email, use dsa@debian.org for anything that
contains private or privileged information and should not be made
public, and debian-admin@lists.debian.org otherwise. The DSA team is
also present on the #debian-admin IRC channel on OFTC.

If you have a problem with a certain service, not related to the system
administration (such as packages to be removed from the archive,
suggestions for the web site, etc.), generally you'll report a bug
against a pseudo-package. See Bug reporting for information on
how to submit bugs.

Some of the core servers are restricted, but the information from there
is mirrored to another server.

4.4.1. The bugs server

bugs.debian.org is the canonical location for the Bug Tracking
System (BTS).

If you plan on doing some statistical analysis or processing of Debian
bugs, this would be the place to do it. Please describe your plans on
debian-devel@lists.debian.org before implementing anything, however,
to reduce unnecessary duplication of effort or wasted processing time.

4.4.2. The ftp-master server

The ftp-master.debian.org server holds the canonical copy of the
Debian archive. Generally, packages uploaded to ftp.upload.debian.org
end up on this server; see Uploading a package.

It is restricted; a mirror is available on
mirror.ftp-master.debian.org.

Problems with the Debian FTP archive generally need to be reported as
bugs against the ftp.debian.org pseudo-package or an email to
ftpmaster@debian.org, but also see the procedures in
Moving, removing, renaming, orphaning, adopting, and reintroducing packages.

4.4.3. The www-master server

The main web server is www-master.debian.org. It holds the official
web pages, the face of Debian for most newbies.

If you find a problem with the Debian web server, you should generally
submit a bug against the pseudo-package www.debian.org. Remember to
check whether or not someone else has already reported the problem to
the Bug Tracking System [https://bugs.debian.org/www.debian.org].

4.4.4. The people web server

people.debian.org is the server used for developers' own web pages
about anything related to Debian.

If you have some Debian-specific information which you want to serve on
the web, you can do this by putting material in the public_html
directory under your home directory on people.debian.org. This will
be accessible at the URL
https://people.debian.org/~your-user-id/.

You should only use this particular location because it will be backed
up, whereas on other hosts it won't.

Usually the only reason to use a different host is when you need to
publish materials subject to the U.S. export restrictions, in which case
you can use one of the other servers located outside the United States.

Send mail to debian-devel@lists.debian.org if you have any
questions.

4.4.5. salsa.debian.org: Git repositories and collaborative development platform

If you want to use a git repository for any of your Debian work, you can
use Debian's GitLab instance called Salsa [https://salsa.debian.org]
for that purpose. Gitlab provides also the possibility to have merge
requests, wiki pages, bug trackers among many other services as well as
a fine-grained tuning of access permission, to help working on projects
collaboratively.

For more information, please see the documentation at
https://wiki.debian.org/Salsa/Doc.

Any Debian package hosted on Salsa has also access to the
Salsa CI [https://salsa.debian.org/salsa-ci-team/pipeline] .
The Salsa CI pipeline mimics the tests that are run after each upload to Debian,
but instead of having to wait for results or risk the health of the Debian
repositories, Salsa CI provides you with instant feedback about any problems the
changes you made may have created or solved.

4.4.6. GitHub.com: Submitting pull requests to upstream repositories

If some upstream repository is hosted on GitHub.com [https://github.com],
you can use the Debian organization [https://github.com/Debian] to create
repository forks and submit changed branches with pull requests to upstream
maintainers.

The organization is open to all Debian Members. To request membership,
open an issue in the Debian/.github meta repository [https://github.com/Debian/.github/issues/new?assignees=&labels=join&template=join.yml&title=please+add+me+to+this+organization].

4.4.7. chroots to different distributions

On some machines, there are chroots to different distributions
available. You can use them like this:

vore$ dchroot unstable
Executing shell in chroot: /org/vore.debian.org/chroots/user/unstable

In all chroots, the normal user home directories are available. You can
find out which chroots are available via
https://db.debian.org/machines.cgi.

4.5. The Developers Database

The Developers Database, at https://db.debian.org/, is an LDAP
directory for managing Debian developer attributes. You can use this
resource to search the list of Debian developers. Part of this
information is also available through the finger service on Debian
servers; try finger
yourlogin@db.debian.org to see what it reports.

Developers can log into the
database [https://db.debian.org/login.html] to change various
information about themselves, such as:

	forwarding address for your debian.org email as well as spam handling.
See https://db.debian.org/forward.html for a description of all the options.

	subscription to debian-private

	whether you are on vacation

	personal information such as your address, country, the latitude and
longitude of the place where you live for use in the world map of
Debian developers [https://www.debian.org/devel/developers.loc],
phone and fax numbers, IRC nickname and web page

	password and preferred shell on Debian Project machines

Most of the information is not accessible to the public, naturally. For
more information please read the online documentation that you can find
at https://db.debian.org/doc-general.html.

Developers can also submit their SSH keys to be used for authorization
on the official Debian machines, and even add new *.debian.net DNS
entries. Those features are documented at
https://db.debian.org/doc-mail.html.

4.6. The Debian archive

The Debian distribution consists of a lot of packages (currently around
30000 source packages) and a few additional files (such
as documentation and installation disk images).

Here is an example directory tree of a complete Debian archive:

dists/stable/main/
dists/stable/main/binary-amd64/
dists/stable/main/binary-armel/
dists/stable/main/binary-i386/
 ...
dists/stable/main/source/
 ...
dists/stable/main/disks-amd64/
dists/stable/main/disks-armel/
dists/stable/main/disks-i386/
 ...

dists/stable/contrib/
dists/stable/contrib/binary-amd64/
dists/stable/contrib/binary-armel/
dists/stable/contrib/binary-i386/
 ...
dists/stable/contrib/source/

dists/stable/non-free/
dists/stable/non-free/binary-amd64/
dists/stable/non-free/binary-armel/
dists/stable/non-free/binary-i386/
 ...
dists/stable/non-free/source/

dists/stable/non-free-firmware/
dists/stable/non-free-firmware/binary-amd64/
dists/stable/non-free-firmware/binary-armel/
dists/stable/non-free-firmware/binary-i386/
 ...
dists/stable/non-free-firmware/source/

dists/testing/
dists/testing/main/
 ...
dists/testing/contrib/
 ...
dists/testing/non-free/
 ...
dists/testing/non-free-firmware/
 ...

dists/unstable
dists/unstable/main/
 ...
dists/unstable/contrib/
 ...
dists/unstable/non-free/
 ...
dists/unstable/non-free-firmware/
 ...

pool/
pool/main/a/
pool/main/a/apt/
 ...
pool/main/b/
pool/main/b/bash/
 ...
pool/main/liba/
pool/main/liba/libalias-perl/
 ...
pool/main/m/
pool/main/m/mailx/
 ...
pool/non-free/d/
pool/non-free/d/doc-rfc/
 ...
pool/non-free-firmware/f/
pool/non-free-firmware/f/firmware-nonfree/
 ...

As you can see, the top-level directory contains two directories,
dists/ and pool/. The latter is a “pool” in which the packages
actually are, and which is handled by the archive maintenance database
and the accompanying programs. The former contains the distributions,
stable, testing and unstable. The Packages and
Sources files in the distribution subdirectories can reference files
in the pool/ directory. The directory tree below each of the
distributions is arranged in an identical manner. What we describe below
for stable is equally applicable to the unstable and testing
distributions.

dists/stable contains four directories, namely main,
contrib, non-free and non-free-firmware.

In each of the areas, there is a directory for the source packages
(source) and a directory for each supported architecture
(binary-i386, binary-amd64, etc.).

The main area contains additional directories which hold the disk
images and some essential pieces of documentation required for
installing the Debian distribution on a specific architecture
(disks-i386, disks-amd64, etc.).

4.6.1. Sections

The main section of the Debian archive is what makes up the
official Debian distribution. The main section is official
because it fully complies with all our guidelines. The other two
sections do not, to different degrees; as such, they are not
officially part of Debian.

Every package in the main section must fully comply with the Debian
Free Software
Guidelines [https://www.debian.org/social_contract#guidelines] (DFSG)
and with all other policy requirements as described in the Debian
Policy Manual [https://www.debian.org/doc/debian-policy/]. The DFSG
is our definition of “free software.” Check out the Debian Policy Manual
for details.

Packages in the contrib section have to comply with the DFSG, but
may fail other requirements. For instance, they may depend on non-free
packages.

Packages which do not conform to the DFSG are placed in the non-free
or non-free-firmware sections. These packages are not considered as
part of the Debian distribution, though we enable their use, and we
provide infrastructure (such as our bug-tracking system and mailing
lists) for these non-free software packages.

The Debian Policy Manual [https://www.debian.org/doc/debian-policy/]
contains a more exact definition of the four sections. The above
discussion is just an introduction.

The separation of the four sections at the top-level of the archive is
important for all people who want to distribute Debian, either via FTP
servers on the Internet or on CD-ROMs: by distributing only the main
and contrib sections, one can avoid any legal risks. Some packages
in the non-free section do not allow commercial distribution, for
example.

On the other hand, a CD-ROM vendor could easily check the individual
package licenses of the packages in non-free and include as many on
the CD-ROMs as it's allowed to. (Since this varies greatly from vendor
to vendor, this job can't be done by the Debian developers.)

Note that the term section is also used to refer to categories which
simplify the organization and browsing of available packages: admin,
net, utils, etc. Once upon a time, these sections (subsections,
rather) existed in the form of subdirectories within the Debian archive.
Nowadays, these exist only in the Section header fields of packages.

4.6.2. Architectures

In the first days, the Linux kernel was only available for Intel i386
(or greater) platforms, and so was Debian. But as Linux became more and
more popular, the kernel was ported to other architectures and Debian
started to support them. And as if supporting so much hardware was not
enough, Debian decided to build some ports based on other Unix kernels,
like hurd and kfreebsd.

Debian GNU/Linux 1.3 was only available as i386. Debian 2.0 shipped
for i386 and m68k architectures. Debian 2.1 shipped for the
i386, m68k, alpha, and sparc architectures. Since then
Debian has grown hugely. Debian 9 supports a total of ten Linux
architectures (amd64, arm64, armel, armhf, i386,
mips, mips64el, mipsel, ppc64el, and s390x) and two
kFreeBSD architectures (kfreebsd-i386 and kfreebsd-amd64).

Information for developers and users about the specific ports are
available at the Debian Ports web
pages [https://www.debian.org/ports/].

4.6.3. Packages

There are two types of Debian packages, namely source and binary
packages.

Depending on the format of the source package, it will consist of one or
more files in addition to the mandatory .dsc file:

	with format “1.0”, it has either a .tar.gz file or both an
.orig.tar.gz and a .diff.gz file;

	with format “3.0 (quilt)”, it has a mandatory
.orig.tar.{gz,bz2,xz} upstream tarball, multiple optional
.orig-component.tar.{gz,bz2,xz} additional upstream
tarballs and a mandatory debian.tar.{gz,bz2,xz} debian tarball;

	with format “3.0 (native)”, it has only a single .tar.{gz,bz2,xz}
tarball.

If a package is developed specially for Debian and is not distributed
outside of Debian, there is just one .tar.{gz,bz2,xz} file, which
contains the sources of the program; it's called a “native” source
package. If a package is distributed elsewhere too, the
.orig.tar.{gz,bz2,xz} file stores the so-called
upstream source code, that is the source code that's distributed by
the upstream maintainer (often the author of the software). In this
case, the .diff.gz or the debian.tar.{gz,bz2,xz} contains the
changes made by the Debian maintainer.

The .dsc file lists all the files in the source package together
with checksums (md5sums, sha1sums, sha256sums) and some
additional info about the package (maintainer, version, etc.).

4.6.4. Distributions

The directory system described in the previous chapter is itself
contained within distribution directories. Each distribution is
actually contained in the pool directory in the top level of the
Debian archive itself.

To summarize, the Debian archive has a root directory within a mirror
site. For instance, at the mirror site ftp.us.debian.org the
Debian archive itself is contained in
/debian [http://ftp.us.debian.org/debian], which is a common location
(another is /pub/debian).

A distribution comprises Debian source and binary packages, and the
respective Sources and Packages index files, containing the
header information from all those packages. The former are kept in the
pool/ directory, while the latter are kept in the dists/
directory of the archive (for backwards compatibility).

4.6.4.1. Stable, testing, and unstable

There are always distributions called stable (residing in
dists/stable), testing (residing in dists/testing), and
unstable (residing in dists/unstable). This reflects the
development process of the Debian project.

Active development is done in the unstable distribution (that's why
this distribution is sometimes called the development
distribution). Every Debian developer can update their packages in
this distribution at any time. Thus, the contents of this distribution
change from day to day. Since no special effort is made to make sure
everything in this distribution is working properly, it is sometimes
literally unstable.

The testing distribution is generated automatically by
taking packages from unstable if they satisfy certain criteria.
Those criteria should ensure a good quality for packages within
testing. The update to testing is launched twice each day, right
after the new packages have been installed. See The testing distribution.

After a period of development, once the release manager deems fit, the
testing distribution is frozen, meaning that the policies which
control how packages move from unstable to testing are
tightened. Packages which are too buggy are removed. No changes are
allowed into testing except for bug fixes. After some time has
elapsed, depending on progress, the testing distribution is frozen
even further. Details of the handling of the testing distribution are
published by the Release Team on debian-devel-announce. After the open
issues are solved to the satisfaction of the Release Team, the
distribution is released. Releasing means that testing is renamed to
stable, and a new copy is created for the new testing, and the
previous stable is renamed to oldstable and stays there until it
is finally archived. On archiving, the contents are moved to
archive.debian.org.

This development cycle is based on the assumption that the unstable
distribution becomes stable after passing a period of being in
testing. Even once a distribution is considered stable, a few bugs
inevitably remain — that's why the stable distribution is updated every
now and then. However, these updates are tested very carefully and have
to be introduced into the archive individually to reduce the risk of
introducing new bugs. You can find proposed additions to stable in
the proposed-updates directory. Those packages in
proposed-updates that pass muster are periodically moved as a batch
into the stable distribution and the revision level of the stable
distribution is incremented (e.g., ‘6.0’ becomes ‘6.0.1’, ‘5.0.7’
becomes ‘5.0.8’, and so forth). Please refer to Special case: uploads to the stable and oldstable distributions for details.

Note that development in unstable during the freeze should not be
continued as usual, as packages are still build in unstable, before they
migrate to testing, thus unstable should only contain packages
meant for testing. Thus only upload to unstable during freezes, if
you are planning to request an unblock (or if the package is not in
testing).

If you want to develop new stuff for after the freeze, upload to
experimental instead.

4.6.4.2. More information about the testing distribution

Packages are usually installed into the testing distribution after
they have undergone some degree of testing in unstable.

For more details, please see the The testing distribution.

4.6.4.3. Experimental

The experimental distribution is a special distribution. It is not a
full distribution in the same sense as stable, testing and
unstable are. Instead, it is meant to be a temporary staging area
for highly experimental software where there's a good chance that the
software could break your system, or software that's just too unstable
even for the unstable distribution (but there is a reason to package
it nevertheless). Users who download and install packages from
experimental are expected to have been duly warned. In short, all
bets are off for the experimental distribution.

These are the sources.list 5 lines for experimental:

deb http://deb.debian.org/debian/ experimental main
deb-src http://deb.debian.org/debian/ experimental main

If there is a chance that the software could do grave damage to a
system, it is likely to be better to put it into experimental. For
instance, an experimental compressed file system should probably go into
experimental.

Whenever there is a new upstream version of a package that introduces
new features but breaks a lot of old ones, it should either not be
uploaded, or be uploaded to experimental. A new, beta, version of
some software which uses a completely different configuration can go
into experimental, at the maintainer's discretion. If you are
working on an incompatible or complex upgrade situation, you can also
use experimental as a staging area, so that testers can get early
access.

Some experimental software can still go into unstable, with a few
warnings in the description, but that isn't recommended because packages
from unstable are expected to propagate to testing and thus to
stable. You should not be afraid to use experimental since it
does not cause any pain to the ftpmasters, the experimental packages are
periodically removed once you upload the package in unstable with a
higher version number.

New software which isn't likely to damage your system can go directly
into unstable.

An alternative to experimental is to use your personal web space on
people.debian.org.

4.6.5. Release code names

Every released Debian distribution has a code name: Debian
11 is called bullseye;
Debian 12, bookworm; Debian
13, trixie; the next release,
Debian 14, will be called forky
and Debian 15 will be called
duke. There is also a pseudo-distribution,
called sid, which is the current unstable distribution; since
packages are moved from unstable to testing as they approach
stability, sid itself is never released. As well as the usual
contents of a Debian distribution, sid contains packages for
architectures which are not yet officially supported or released by
Debian. These architectures are planned to be integrated into the
mainstream distribution at some future date. The codenames and versions
for older releases are listed [https://www.debian.org/releases/] on
the website.

Since Debian has an open development model (i.e., everyone can
participate and follow the development) even the unstable and
testing distributions are distributed to the Internet through the
Debian FTP and HTTP server network. Thus, if we had called the directory
which contains the release candidate version testing, then we would
have to rename it to stable when the version is released, which
would cause all FTP mirrors to re-retrieve the whole distribution (which
is quite large).

On the other hand, if we called the distribution directories
Debian-x.y from the beginning, people would think that Debian
release x.y is available. (This happened in the past, where a CD-ROM
vendor built a Debian 1.0 CD-ROM based on a pre-1.0 development version.
That's the reason why the first official Debian release was 1.1, and not
1.0.)

Thus, the names of the distribution directories in the archive are
determined by their code names and not their release status (e.g.,
trixie). These names stay the same during the
development period and after the release; symbolic links, which can be
changed easily, indicate the currently released stable distribution.
That's why the real distribution directories use the code names,
while symbolic links for stable, testing, and unstable point
to the appropriate release directories.

4.7. Debian mirrors

The various download archives and the web site have several mirrors
available in order to relieve our canonical servers from heavy load. In
fact, some of the canonical servers aren't public — a first tier of
mirrors balances the load instead. That way, users always access the
mirrors and get used to using them, which allows Debian to better spread
its bandwidth requirements over several servers and networks, and
basically makes users avoid hammering on one primary location. Note that
the first tier of mirrors is as up-to-date as it can be since they
update when triggered from the internal sites (we call this push
mirroring).

All the information on Debian mirrors, including a list of the available
public FTP/HTTP servers, can be found at
https://www.debian.org/mirror/. This useful page also includes
information and tools which can be helpful if you are interested in
setting up your own mirror, either for internal or public access.

Note that mirrors are generally run by third parties who are interested
in helping Debian. As such, developers generally do not have accounts on
these machines.

4.8. The Incoming system

The Incoming system is responsible for collecting updated packages and
installing them in the Debian archive. It consists of a set of
directories and scripts that are installed on ftp-master.debian.org.

Packages are uploaded by all the maintainers into a directory called
UploadQueue. This directory is scanned every few minutes by a daemon
called queued, *.command-files are executed, and remaining and
correctly signed *.changes-files are moved together with their
corresponding files to the unchecked directory. This directory is
not visible for most Developers, as ftp-master is restricted; it is
scanned every 15 minutes by the dak process-upload script, which
verifies the integrity of the uploaded packages and their cryptographic
signatures. If the package is considered ready to be installed, it is
moved into the done directory. If this is the first upload of the
package (or it has new binary packages), it is moved to the new
directory, where it waits for approval by the ftpmasters. If the package
contains files to be installed by hand it is moved to the byhand
directory, where it waits for manual installation by the ftpmasters.
Otherwise, if any error has been detected, the package is refused and is
moved to the reject directory.

Once the package is accepted, the system sends a confirmation mail to
the maintainer and closes all the bugs marked as fixed by the upload,
and the auto-builders may start recompiling it. The package is now
publicly accessible at https://incoming.debian.org/ until it is
really installed in the Debian archive. This happens four times a day
(and is also called the dinstall run for historical reasons); the
package is then removed from incoming and installed in the pool along
with all the other packages. Once all the other updates (generating new
Packages and Sources index files for example) have been made, a
special script is called to ask all the primary mirrors to update
themselves.

The archive maintenance software will also send the OpenPGP signed
.changes file that you uploaded to the appropriate mailing lists. If
a package is released with the Distribution set to stable, the
announcement is sent to debian-changes@lists.debian.org. If a
package is released with Distribution set to unstable or
experimental, the announcement will be posted to
debian-devel-changes@lists.debian.org or
debian-experimental-changes@lists.debian.org instead.

Though ftp-master is restricted, a copy of the installation is available
to all developers on mirror.ftp-master.debian.org.

4.9. Package information

4.9.1. On the web

Each package has several dedicated web pages.
https://packages.debian.org/package-name displays each version
of the package available in the various distributions. Each version
links to a page which provides information, including the package
description, the dependencies, and package download links.

The bug tracking system tracks bugs for each package. You can view the
bugs of a given package at the URL
https://bugs.debian.org/package-name.

4.9.2. The dak ls utility

dak ls is part of the dak suite of tools, listing available package
versions for all known distributions and architectures. The dak tool
is available on ftp-master.debian.org, and on the mirror on
mirror.ftp-master.debian.org. It uses a single argument
corresponding to a package name. An example will explain it better:

$ dak ls evince
evince | 3.22.1-3+deb11u2 | oldstable | source, amd64, arm64, armel, armhf, i386, mips, mips64el, mipsel, ppc64el, s390x
evince | 3.22.1-3+deb11u2 | oldstable-debug | source
evince | 3.30.2-3+deb12u1 | stable | source, amd64, arm64, armel, armhf, i386, mips, mips64el, mipsel, ppc64el, s390x
evince | 3.30.2-3+deb12u1 | stable-debug | source
evince | 3.38.2-1 | testing | source, amd64, arm64, armel, armhf, i386, mips64el, mipsel, ppc64el, s390x
evince | 3.38.2-1 | unstable | source, amd64, arm64, armel, armhf, i386, mips64el, mipsel, ppc64el, s390x
evince | 3.38.2-1 | unstable-debug | source
evince | 40.4-1 | buildd-experimental | source, amd64, arm64, armel, armhf, i386, mips64el, mipsel, ppc64el, s390x
evince | 40.4-1 | experimental | source, amd64, arm64, armel, armhf, i386, mips64el, mipsel, ppc64el, s390x
evince | 40.4-1 | experimental-debug | source

In this example, you can see that the version in unstable differs
from the version in testing and that there has been a binary-only
NMU of the package for all architectures. Each version of the package
has been recompiled on all architectures.

4.10. The Debian Package Tracker

The Debian Package Tracker is an email and web-based tool to track the
activity of a source package. You can get the same emails that the
package maintainer gets, simply by subscribing to the package in the
Debian Package Tracker.

The package tracker has a web interface at
https://tracker.debian.org/ that puts together a lot of
information about each source package. It features many useful links
(BTS, QA stats, contact information, DDTP translation status, buildd
logs) and gathers much more information from various places (30 latest
changelog entries, testing status, etc.). It's a very useful tool if you
want to know what's going on with a specific source package.
Furthermore, once authenticated, you can subscribe and unsubscribe from
any package with a single click.

You can jump directly to the web page concerning a specific source
package with a URL like
https://tracker.debian.org/pkg/sourcepackage.

For more in-depth information, you should have a look at its
documentation [https://qa.pages.debian.net/distro-tracker/]. Among
other things, it explains you how to interact with it by email, how to
filter the mails that it forwards, how to configure your VCS commit
notifications, how to leverage its features for maintainer teams, etc.

4.11. Developer's packages overview

A QA (quality assurance) web portal is available at
https://qa.debian.org/developer.php which displays a table
listing all the packages of a single developer (including those where
the party is listed as a co-maintainer). The table gives a good summary
about the developer's packages: number of bugs by severity, list of
available versions in each distribution, testing status and much more
including links to any other useful information.

It is a good idea to look up your own data regularly so that you don't
forget any open bugs, and so that you don't forget which packages are
your responsibility.

4.12. Debian's FusionForge installation: Alioth

Until Alioth was deprecated and eventually turned off in June
2018, it was a Debian service based on a slightly modified version of
the FusionForge software (which evolved from SourceForge and GForge).
This software offered developers access to easy-to-use tools such as bug
trackers, patch managers, project/task managers, file hosting services,
mailing lists, VCS repositories, etc.

For many previously offered services replacements exist. This is
important to know, as there are still many references to alioth which
still need fixing. If you encounter such references please take the time
to try fixing them, for example by filing bugs or when possible fixing
the reference.

4.13. Goodies for Debian Members

Benefits available to Debian Members are documented on
https://wiki.debian.org/MemberBenefits.

5. Managing Packages

This chapter contains information related to creating, uploading,
maintaining, and porting packages.

5.1. New packages

If you want to create a new package for the Debian distribution, you
should first check the Work-Needing and Prospective Packages
(WNPP) [https://www.debian.org/devel/wnpp/] list. Checking the WNPP
list ensures that no one is already working on packaging that software,
and that effort is not duplicated. Read the WNPP web
pages [https://www.debian.org/devel/wnpp/] for more information.

Assuming no one else is already working on your prospective package, you
must then submit a bug report (Bug reporting) against the
pseudo-package wnpp describing your plan to create a new package,
including, but not limiting yourself to, the description of the package
(so that others can review it), the license of the prospective package,
and the current URL where it can be downloaded from.

You should set the subject of the bug to ITP: foo -- short
description, substituting the name of the new package for foo. The
severity of the bug report must be set to wishlist. Please send a
copy to debian-devel@lists.debian.org by using the X-Debbugs-CC
header (don't use CC:, because that way the message's subject won't
indicate the bug number). If you are packaging so many new packages
(>10) that notifying the mailing list in separate messages is too
disruptive, send a summary after filing the bugs to the debian-devel
list instead. This will inform the other developers about upcoming
packages and will allow a review of your description and package name.

Please include a Closes: #nnnnn entry in the changelog of the
new package in order for the bug report to be automatically closed once
the new package is installed in the archive (see When bugs are closed by new uploads).

If you think your package needs some explanations for the administrators
of the NEW package queue, include them in your changelog, send to
ftpmaster@debian.org a reply to the email you receive as a
maintainer after your upload, or reply to the rejection email in case
you are already re-uploading.

When closing security bugs include CVE numbers as well as the
Closes: #nnnnn. This is useful for the security team to track
vulnerabilities. If an upload is made to fix the bug before the advisory
ID is known, it is encouraged to modify the historical changelog entry
with the next upload. Even in this case, please include all available
pointers to background information in the original changelog entry.

There are a number of reasons why we ask maintainers to announce their
intentions:

	It helps the (potentially new) maintainer to tap into the experience
of people on the list, and lets them know if anyone else is working
on it already.

	It lets other people thinking about working on the package know that
there already is a volunteer, so efforts may be shared.

	It lets the rest of the maintainers know more about the package than
the one line description and the usual changelog entry
Initial release that gets posted to
debian-devel-changes@lists.debian.org.

	It is helpful to the people who live off unstable (and form our
first line of testers). We should encourage these people.

	The announcements give maintainers and other interested parties a
better feel of what is going on, and what is new, in the project.

Please see https://ftp-master.debian.org/REJECT-FAQ.html for
common rejection reasons for a new package.

5.2. Recording changes in the package

Changes that you make to the package need to be recorded in the
debian/changelog file, for human users to read and comprehend.
These changes should provide a concise description of what was changed,
why (if it's in doubt), and note if any bugs were closed. They also
record when the packaging was completed. This file will be installed in
/usr/share/doc/package/changelog.Debian.gz, or
/usr/share/doc/package/changelog.gz for native packages.

The debian/changelog file conforms to a certain structure, with a
number of different fields. One field of note, the distribution, is
described in Picking a distribution. More
information about the structure of this file can be found in the Debian
Policy section titled debian/changelog.

Changelog entries can be used to automatically close Debian bugs when
the package is installed into the archive. See When bugs are closed by new uploads.

It is conventional that the changelog entry of a package that contains a
new upstream version of the software looks like this:

* New upstream release.

There are tools to help you create entries and finalize the changelog for
release — see devscripts (command dch), git-buildpackage
(command gbp dch) and dpkg-dev-el.

See also Best practices for debian/changelog.

5.3. Testing the package

Before you upload your package, you should do basic testing on it. At a
minimum, you should try the following activities (you'll need to have an
older version of the same Debian package around):

	Run lintian over the package. You can run lintian as follows:
lintian -v package-version.changes. This will check the
source package as well as the binary package. If you don't understand
the output that lintian generates, try adding the -i switch,
which will cause lintian to output a very verbose description of
the problem.

Normally, a package should not be uploaded if it causes lintian
to emit errors (they will start with E).

For more information on lintian, see lintian.

	Optionally run debdiff (see debdiff) to analyze
changes from an older version, if one exists.

	Install the package and make sure the software works in an up-to-date
unstable system.

	Upgrade the package from an older version to your new version.

	Remove the package, then reinstall it.

	Installing, upgrading and removal of packages can either be tested
manually or by using the piuparts tool.

	Copy the source package in a different directory and try unpacking it
and rebuilding it. This tests if the package relies on existing files
outside of it, or if it relies on permissions being preserved on the
files shipped inside the .diff.gz file.

5.4. Layout of the source package

There are two types of Debian source packages:

	the so-called native packages, where there is no distinction
between the original sources and the patches applied for Debian

	the (more common) packages where there's an original source tarball
file accompanied by another file that contains the changes made by
Debian

For the native packages, the source package includes a Debian source
control file (.dsc) and the source tarball (.tar.{gz,bz2,xz}). A
source package of a non-native package includes a Debian source control
file, the original source tarball (.orig.tar.{gz,bz2,xz}) and the
Debian changes (.diff.gz for the source format “1.0” or
.debian.tar.{gz,bz2,xz} for the source format “3.0 (quilt)”).

With source format “1.0”, whether a package is native or not was
determined by dpkg-source at build time. Nowadays it is recommended
to be explicit about the desired source format by putting either “3.0
(quilt)” or “3.0 (native)” in debian/source/format. The rest of this
section relates only to non-native packages.

The first time a version is uploaded that corresponds to a particular
upstream version, the original source tar file must be uploaded and
included in the .changes file. Subsequently, this very same tar file
should be used to build the new diffs and .dsc files, and will not
need to be re-uploaded.

By default, dpkg-genchanges and dpkg-buildpackage will include
the original source tar file if and only if the current changelog entry
has a different upstream version from the preceding entry. This behavior
may be modified by using -sa to always include it or -sd to
always leave it out.

If no original source is included in the upload, the original source
tar-file used by dpkg-source when constructing the .dsc file and
diff to be uploaded must be byte-for-byte identical with the one
already in the archive.

Please notice that, in non-native packages, permissions on files that
are not present in the *.orig.tar.{gz,bz2,xz} will not be preserved,
as diff does not store file permissions in the patch. However, when
using source format “3.0 (quilt)”, permissions of files inside the
debian directory are preserved since they are stored in a tar
archive.

5.5. Picking a distribution

Each upload needs to specify which distribution the package is intended
for. The package build process extracts this information from the first
line of the debian/changelog file and places it in the
Distribution field of the .changes file.

Packages are normally uploaded into unstable. Uploads to
unstable or experimental should use these suite names in the
changelog entry; uploads for other supported suites should use the suite
codenames, as they avoid any ambiguity.

Actually, there are other possible distributions:
codename-security, but read Handling security-related bugs for more information on those.

It is not possible to upload a package into several distributions at the
same time.

5.5.1. Special case: uploads to the stable and oldstable distributions

Uploading to stable means that the package will be transferred to
the proposed-updates-new queue for review by the stable release
managers, and if approved will be installed in the
stable-proposed-updates directory of the Debian archive. From there,
it will be included in stable with the next point release.

Uploads to a supported stable release should target their suite name in
the changelog, i.e. trixie or bookworm. You should normally use
reportbug and the release.debian.org pseudo-package to send a source
debdiff, rationale and associated bug numbers to the stable release
managers, and await a request to upload or further information.

If you are confident that the upload will be accepted without changes,
please feel free to upload at the same time as filing the
release.debian.org bug. However if you are new to the process, we would
recommend getting approval before uploading so you get a chance to see
if your expectations align with ours.

Either way, there must be an accompanying bug for tracking, and your
upload must comply with these acceptance criteria defined by the
the stable release managers. These criteria are designed to help the process
be as smooth and frustration-free as possible.

	The bug you want to fix in stable must be fixed in unstable
already (and not waiting in NEW or the delayed queue).

	The bug should be of severity "important" or higher.

	Bug meta-data - particularly affected versions - must be
up to date.

	Fixes must be minimal and relevant and include a sufficiently
detailed changelog entry.

	A source debdiff of the proposed change must be included
in your request (not just the raw patches or "a debdiff
can be found at $URL").

	The proposed package must have a correct version number
(e.g. ...+deb13u1/...~deb13u1 for trixie
or +deb12u1/~deb12u1 for bookworm)
and you should be able to explain what testing it has had.
See the Debian Policy for the version number:
https://www.debian.org/doc/debian-policy/ch-controlfields.html#special-version-conventions

	The update must be built in an stable environment
or chroot (or oldstable if you target that).

	Fixes for security issues should be co-ordinated with the
security team, unless they have explicitly stated that they
will not issue an DSA for the bug (e.g. via a "no-dsa" marker
in the Debian Security Tracker).

	Do not close release.debian.org bugs in debian/changelog. They
will be closed by the release team once the package has reached the
respective point release.

It is recommended to use reportbug as it eases the creation of bugs
with correct meta-data. The release team makes extensive use of usertags
to sort and manage requests and incorrectly tagged reports may take
longer to be noticed and processed.

Uploads to the oldstable distributions are possible as long as it
hasn't been archived. The same rules as for stable apply.

In the past, uploads to stable were used to address security
problems as well. However, this practice is deprecated, as uploads used
for Debian security advisories (DSA) are automatically copied to the
appropriate proposed-updates archive when the advisory is released.
See Handling security-related bugs for detailed
information on handling security problems. If the security team deems
the problem to be too benign to be fixed through a DSA, the stable
release managers are usually willing to include your fix nonetheless in
a regular upload to stable.

5.5.2. Special case: the stable-updates suite

Sometimes the stable release managers will decide that an update to
stable should be made available to users sooner than the next scheduled
point release. In such cases, they can copy the update to the stable-updates
suite, use of which is enabled by the installer by default.

Initially, the process described in Special case: uploads to the stable and oldstable distributions. should be followed
as usual. If you think that the upload should be released via
stable-updates, mention this in your request. Examples of circumstances in
which the upload may qualify for such treatment are:

	The update is urgent and not of a security nature. Security updates
will continue to be pushed through the security archive. Examples
include packages broken by the flow of time (c.f. spamassassin and
the year 2010 problem) and fixes for bugs introduced by point
releases.

	The package in question is a data package and the data must be
updated in a timely manner (e.g. tzdata).

	Fixes to leaf packages that were broken by external changes (e.g.
video downloading tools and tor).

	Packages that need to be current to be useful (e.g. clamav).

	Uploads to stable-updates should target their suite name in
the changelog as usual, e.g. trixie.

Once the upload has been accepted to proposed-updates and is ready
for release, the stable release managers will then copy it to the
stable-updates suite and issue a Stable Update Announcement (SUA)
via the debian-stable-announce mailing list.

Any updates released via stable-updates will be included in stable
with the next point release as usual.

5.5.3. Special case: uploads to testing/testing-proposed-updates

Please see the information in the Direct updates to testing for
details.

5.6. Uploading a package

5.6.1. Source and binary uploads

Each upload to Debian consists of a signed .changes file describing
the requested change to the archive, plus the source and binary package
files that are referenced by the .changes file.

If possible, the version of a package that is uploaded should be a
source-only changes file.
These are typically named *_source.changes, and reference the source
package, but no binary .deb or .udeb packages.
All of the corresponding architecture-dependent and architecture-independent
binary packages, for all architectures, will be built automatically by
the build daemons in a controlled and predictable environment
(see wanna-build for more details).
However, there are several situations where this is not possible.

The first upload of a new source package (see New packages)
must include binary packages, so that they can be reviewed by the
archive administrators before they are added to Debian.

If new binary packages are added to an existing source package, then the
first upload that lists the new binary packages in debian/control
must include binary packages, again so that they can be reviewed by the
archive administrators before they are added to Debian.
It is preferred for these uploads to be done via the experimental
suite.

Uploads that will be held for review in other queues, such as packages
being added to the *-backports suites, might also require inclusion
of binary packages.

The build daemons will automatically attempt to build any main or
contrib package for which the build-dependencies are available.
Packages in non-free and non-free-firmware will not be built by
the build daemons unless the package has been marked as suitable for
auto-building
(see Marking non-free packages as auto-buildable).

The build daemons only install build-dependencies from the main
archive area.
This means that if a source package has build-dependencies that are
in the contrib, non-free or non-free-firmware archive areas,
then uploads of that package need to include prebuilt binary packages
for every architecture that will be supported.
By definition this can only be the case for source packages that are
themselves in the contrib, non-free or non-free-firmware
archive areas.

Bootstrapping a new architecture, or a new version of a package with
circular dependencies (such as a self-hosting compiler), will sometimes
also require an upload that includes binary packages.

Binary packages in the main archive area that were not built by
Debian's official build daemons will not usually be allowed to migrate
from unstable to testing, so an upload that contains binary
packages built by the package's maintainer must usually be followed by
a source-only upload after the binary upload has been accepted.
This restriction does not apply to contrib, non-free or
non-free-firmware packages.

5.6.2. Uploading to ftp-master

To upload a package, you should upload the files (including the signed
changes and dsc file) with anonymous ftp to ftp.upload.debian.org in
the directory
/pub/UploadQueue/ [ftp://ftp.upload.debian.org/pub/UploadQueue/]. To
get the files processed there, they need to be signed with a key in the
Debian Developers keyring or the Debian Maintainers keyring (see
https://wiki.debian.org/DebianMaintainer).

Please note that you should transfer the changes file last. Otherwise,
your upload may be rejected because the archive maintenance software
will parse the changes file and see that not all files have been
uploaded.

You may also find the Debian packages dupload or
dput useful when uploading packages.These handy programs
help automate the process of uploading packages into Debian.

For removing packages or cancelling an upload, please see
ftp://ftp.upload.debian.org/pub/UploadQueue/README and the Debian
package dcut.

Finally, you should think about the status of your package with relation
to testing before uploading to unstable. If you have a version
in unstable waiting to migrate then it is generally a good idea
to let it migrate before uploading another new version. You should
also check the The Debian Package Tracker for transition warnings to avoid
making uploads that disrupt ongoing transitions.

5.6.3. Delayed uploads

It is sometimes useful to upload a package immediately, but to want this
package to arrive in the archive only a few days later. For example,
when preparing a Non-Maintainer Uploads (NMUs), you might want to
give the maintainer a few days to react.

An upload to the delayed directory keeps the package in the deferred
uploads queue [https://ftp-master.debian.org/deferred.html]. When the
specified waiting time is over, the package is moved into the regular
incoming directory for processing. This is done through automatic
uploading to ftp.upload.debian.org in upload-directory
DELAYED/X-day (X between 0 and 15). 0-day is uploaded
multiple times per day to ftp.upload.debian.org.

With dput, you can use the --delayed DELAY parameter to put the
package into one of the queues.

5.6.4. Security uploads

Do NOT upload a package to the security upload queue (on
*.security.upload.debian.org) without prior authorization from the
security team. If the package does not exactly meet the team's
requirements, it will cause many problems and delays in dealing with the
unwanted upload. For details, please see Handling security-related bugs.

5.6.5. Other upload queues

There is an alternative upload queue in Europe at
ftp://ftp.eu.upload.debian.org/pub/UploadQueue/. It operates in
the same way as ftp.upload.debian.org, but should be faster for
European developers.

Packages can also be uploaded via ssh to ssh.upload.debian.org;
files should be put /srv/upload.debian.org/UploadQueue. This queue
does not support Delayed uploads.

5.6.6. Notifications

The Debian archive maintainers are responsible for handling package
uploads. For the most part, uploads are automatically handled on a daily
basis by the archive maintenance tools, dak process-upload.
Specifically, updates to existing packages to the unstable
distribution are handled automatically. In other cases, notably new
packages, placing the uploaded package into the distribution is handled
manually. When uploads are handled manually, the change to the archive
may take some time to occur. Please be patient.

In any case, you will receive an email notification indicating that the
package has been added to the archive, which also indicates which bugs
will be closed by the upload. Please examine this notification
carefully, checking if any bugs you meant to close didn't get triggered.

The installation notification also includes information on what section
the package was inserted into. If there is a disparity, you will receive
a separate email notifying you of that. Read on below.

Note that if you upload via queues, the queue daemon software will also
send you a notification by email.

Also note that new uploads are announced on the IRC channels
channel #debian-devel-changes. If your upload fails silently, it
could be that your package is improperly signed, in which case you can
find more explanations on
ssh.upload.debian.org:/srv/upload.debian.org/queued/run/log.

5.7. Specifying the package section, subsection and priority

The debian/control file's Section and Priority fields do not
actually specify where the file will be placed in the archive, nor its
priority. In order to retain the overall integrity of the archive, it is
the archive maintainers who have control over these fields. The values
in the debian/control file are actually just hints.

The archive maintainers keep track of the canonical sections and
priorities for packages in the override file. If there is a
disparity between the override file and the package's fields as
indicated in debian/control, then you will receive an email noting
the divergence when the package is installed into the archive. You can
either correct your debian/control file for your next upload, or
else you may wish to make a change in the override
file.

To alter the actual section that a package is put in, you need to first
make sure that the debian/control file in your package is accurate.
Next, submit a bug against ftp.debian.org requesting that the
section or priority for your package be changed from the old section or
priority to the new one. Use a Subject like
override: PACKAGE1:section/priority, [...],
PACKAGEX:section/priority, and include the justification for the
change in the body of the bug report.

For more information about override files, see dpkg-scanpackages 1
and https://www.debian.org/Bugs/Developer#maintincorrect.

Note that the Section field describes both the section as well as
the subsection, which are described in Sections. If
the section is main, it should be omitted. The list of allowable
subsections can be found in
https://www.debian.org/doc/debian-policy/ch-archive.html#s-subsections.

5.8. Handling bugs

Every developer has to be able to work with the Debian bug tracking
system [https://www.debian.org/Bugs/]. This includes knowing how to
file bug reports properly (see Bug reporting), how to update
them and reorder them, and how to process and close them.

The bug tracking system's features are described in the BTS
documentation for developers [https://www.debian.org/Bugs/Developer].
This includes closing bugs, sending followup messages, assigning
severities and tags, marking bugs as forwarded, and other issues.

Operations such as reassigning bugs to other packages, merging separate
bug reports about the same issue, or reopening bugs when they are
prematurely closed, are handled using the so-called control mail server.
All of the commands available on this server are described in the BTS
control server
documentation [https://www.debian.org/Bugs/server-control].

5.8.1. Monitoring bugs

If you want to be a good maintainer, you should periodically check the
Debian bug tracking system (BTS) [https://www.debian.org/Bugs/] for
your packages. The BTS contains all the open bugs against your packages.
You can check them by browsing this page:
https://bugs.debian.org/yourlogin@debian.org.

Maintainers interact with the BTS via email addresses at
bugs.debian.org. Documentation on available commands can be found at
https://www.debian.org/Bugs/, or, if you have installed the
doc-debian package, you can look at the local files
/usr/share/doc/debian/bug-*.

Some find it useful to get periodic reports on open bugs. You can add a
cron job such as the following if you want to get a weekly email
outlining all the open bugs against your packages:

ask for weekly reports of bugs in my packages
0 17 * * fri echo "index maint address" | mail request@bugs.debian.org

Replace address with your official Debian maintainer address.

5.8.2. Responding to bugs

When responding to bugs, make sure that any discussion you have about
bugs is sent to the original submitter of the bug, the bug itself and
(if you are not the maintainer of the package) the maintainer. Sending
an email to 123@bugs.debian.org will send the mail to the
maintainer of the package and record your email with the bug log. If you
don't remember the submitter email address, you can use
123-submitter@bugs.debian.org to also contact the submitter of
the bug. The latter address also records the email with the bug log, so
if you are the maintainer of the package in question, it is enough to
send the reply to 123-submitter@bugs.debian.org. Otherwise you
should include 123@bugs.debian.org so that you also reach the
package maintainer.

If you get a bug which mentions FTBFS, this means Fails to build from
source. Porters frequently use this acronym.

Once you've dealt with a bug report (e.g. fixed it), mark it as done
(close it) by sending an explanation message to
123-done@bugs.debian.org. If you're fixing a bug by changing and
uploading the package, you can automate bug closing as described in
When bugs are closed by new uploads.

You should never close bugs via the bug server close command sent
to control@bugs.debian.org. If you do so, the original submitter
will not receive any information about why the bug was closed.

5.8.3. Bug housekeeping

As a package maintainer, you will often find bugs in other packages or
have bugs reported against your packages which are actually bugs in
other packages. The bug tracking system's features are described in the
BTS documentation for Debian
developers [https://www.debian.org/Bugs/Developer]. Operations such
as reassigning, merging, and tagging bug reports are described in the
BTS control server
documentation [https://www.debian.org/Bugs/server-control]. This
section contains some guidelines for managing your own bugs, based on
the collective Debian developer experience.

Filing bugs for problems that you find in other packages is one of the
civic obligations of maintainership, see Bug reporting for
details. However, handling the bugs in your own packages is even more
important.

Here's a list of steps that you may follow to handle a bug report:

	Decide whether the report corresponds to a real bug or not. Sometimes
users are just calling a program in the wrong way because they
haven't read the documentation. If you diagnose this, just close the
bug with enough information to let the user correct their problem
(give pointers to the good documentation and so on). If the same
report comes up again and again you may ask yourself if the
documentation is good enough or if the program shouldn't detect its
misuse in order to give an informative error message. This is an
issue that may need to be brought up with the upstream author.

If the bug submitter disagrees with your decision to close the bug,
they may reopen it until you find an agreement on how to handle it.
If you don't find any, you may want to tag the bug wontfix to let
people know that the bug exists but that it won't be corrected.
Please make sure that the bug submitter understands the reasons for
your decision by adding an explanation to the message that adds the
wontfix tag.

If this situation is unacceptable, you (or the submitter) may want to
require a decision of the technical committee by filing a new bug
against the tech-ctte pseudo-package with a summary of the situation.
Before doing so, please read the recommended procedure [https://www.debian.org/devel/tech-ctte].

	If the bug is real but it's caused by another package, just reassign
the bug to the right package. If you don't know which package it
should be reassigned to, you should ask for help on
IRC channels or on debian-devel@lists.debian.org.
Please inform the maintainer(s) of the package you reassign the bug
to, for example by Cc:ing the message that does the reassign to
packagename@packages.debian.org and explaining your reasons
in that mail. Please note that a simple reassignment is not
e-mailed to the maintainers of the package being reassigned to, so
they won't know about it until they look at a bug overview for their
packages.

If the bug affects the operation of your package, please consider
cloning the bug and reassigning the clone to the package that really
causes the behavior. Otherwise, the bug will not be shown in your
package's bug list, possibly causing users to report the same bug
over and over again. You should block "your" bug with the reassigned,
cloned bug to document the relationship.

	Sometimes you also have to adjust the severity of the bug so that it
matches our definition of the severity. That's because people tend to
inflate the severity of bugs to make sure their bugs are fixed
quickly. Some bugs may even be dropped to wishlist severity when the
requested change is just cosmetic.

	If the bug is real but the same problem has already been reported by
someone else, then the two relevant bug reports should be merged into
one using the merge command of the BTS. In this way, when the bug is
fixed, all of the submitters will be informed of this. (Note,
however, that emails sent to one bug report's submitter won't
automatically be sent to the other report's submitter.) For more
details on the technicalities of the merge command and its relative,
the unmerge command, see the BTS control server documentation.

	The bug submitter may have forgotten to provide some information, in
which case you have to ask them for the required information. You may
use the moreinfo tag to mark the bug as such. Moreover if you
can't reproduce the bug, you tag it unreproducible. Anyone who
can reproduce the bug is then invited to provide more information on
how to reproduce it. After a few months, if this information has not
been sent by someone, the bug may be closed.

	If the bug is related to the packaging, you just fix it. If you are
not able to fix it yourself, then tag the bug as help. You can
also ask for help on debian-devel@lists.debian.org or
debian-qa@lists.debian.org. If it's an upstream problem, you have
to forward it to the upstream author. Forwarding a bug is not enough,
you have to check at each release if the bug has been fixed or not.
If it has, you just close it, otherwise you have to remind the author
about it. If you have the required skills you can prepare a patch
that fixes the bug and send it to the author at the same time. Make
sure to send the patch to the BTS and to tag the bug as patch.

	If you have fixed a bug in your local copy, or if a fix has been
committed to the VCS repository, you may tag the bug as pending
to let people know that the bug is corrected and that it will be
closed with the next upload (add the closes: in the
changelog). This is particularly useful if you are several
developers working on the same package.

	Once a corrected package is available in the archive, the bug should
be closed indicating the version in which it was fixed. This can be
done automatically; read When bugs are closed by new uploads.

5.8.4. When bugs are closed by new uploads

As bugs and problems are fixed in your packages, it is your
responsibility as the package maintainer to close these bugs. However,
you should not close a bug until the package which fixes the bug has
been accepted into the Debian archive. Therefore, once you get
notification that your updated package has been installed into the
archive, you can and should close the bug in the BTS. Also, the bug
should be closed with the correct version.

However, it's possible to avoid having to manually close bugs after the
upload — just list the fixed bugs in your debian/changelog file,
following a certain syntax, and the archive maintenance software will
close the bugs for you. For example:

acme-cannon (3.1415) unstable; urgency=low

 * Frobbed with options (closes: Bug#98339)
 * Added safety to prevent operator dismemberment, closes: bug#98765,
 bug#98713, #98714.
 * Added man page. Closes: #98725.

Technically speaking, the following Perl regular expression describes
how bug closing changelogs are identified:

/closes:\s*(?:bug)?\#?\s?\d+(?:,\s*(?:bug)?\#?\s?\d+)*/ig

We prefer the closes: #XXX syntax, as it is the most concise
entry and the easiest to integrate with the text of the changelog.
Unless specified differently by the -v-switch to
dpkg-buildpackage, only the bugs closed in the most recent changelog
entry are closed (basically, exactly the bugs mentioned in the
changelog-part in the .changes file are closed).

Historically, uploads identified as Non-Maintainer Uploads (NMUs) were tagged fixed instead of being closed, but that
practice was ceased with the advent of version-tracking. The same
applied to the tag fixed-in-experimental.

If you happen to mistype a bug number or forget a bug in the changelog
entries, don't hesitate to undo any damage the error caused. To reopen
wrongly closed bugs, send a reopen XXX command to the bug
tracking system's control address, control@bugs.debian.org. To close
any remaining bugs that were fixed by your upload, email the
.changes file to XXX-done@bugs.debian.org, where XXX is
the bug number, and put Version: YYY and an empty line as the first
two lines of the body of the email, where YYY is the first version
where the bug has been fixed.

Bear in mind that it is not obligatory to close bugs using the changelog
as described above. If you simply want to close bugs that don't have
anything to do with an upload you made, do it by emailing an explanation
to XXX-done@bugs.debian.org. Do not close bugs in the
changelog entry of a version if the changes in that version of the
package don't have any bearing on the bug.

For general information on how to write your changelog entries, see
Best practices for debian/changelog.

5.8.5. Handling security-related bugs

Due to their sensitive nature, security-related bugs must be handled
carefully. The Debian Security Team exists to coordinate this activity,
keeping track of outstanding security problems, helping maintainers with
security problems or fixing them themselves, sending security
advisories, and maintaining security.debian.org.

When you become aware of a security-related bug in a Debian package,
whether or not you are the maintainer, collect pertinent information
about the problem, and promptly contact the security team by emailing
team@security.debian.org. If desired, email can be encrypted with
the Debian Security Contact key, see
https://www.debian.org/security/faq#contact for details. DO NOT
UPLOAD any packages for stable without contacting the team. Useful
information includes, for example:

	Whether or not the bug is already public.

	Which versions of the package are known to be affected by the bug.
Check each version that is present in a supported Debian release, as
well as testing and unstable.

	The nature of the fix, if any is available (patches are especially
helpful)

	Any fixed packages that you have prepared yourself (send the
resulting debdiff or alternatively only the .diff.gz and .dsc
files and read Preparing packages to address security issues first)

	Any assistance you can provide to help with testing (exploits,
regression testing, etc.)

	Any information needed for the advisory (see Security Advisories)

As the maintainer of the package, you have the responsibility to
maintain it, even in the stable release. You are in the best position to
evaluate patches and test updated packages, so please see the sections
below on how to prepare packages for the Security Team to handle.

5.8.5.1. Debian Security Tracker

The security team maintains a central database, the Debian Security
Tracker [https://security-tracker.debian.org/]. This contains all
public information that is known about security issues: which packages
and versions are affected or fixed, and thus whether stable, testing
and/or unstable are vulnerable. Information that is still confidential
is not added to the tracker.

You can search it for a specific issue, but also on package name. Look
for your package to see which issues are still open. If you can, please
provide more information about those issues, or help to address them in
your package. Instructions are on the tracker web pages.

5.8.5.2. Confidentiality

Unlike most other activities within Debian, information about security
issues must sometimes be kept private for a time. This allows software
distributors to coordinate their disclosure in order to minimize their
users' exposure. Whether this is the case depends on the nature of the
problem and corresponding fix, and whether it is already a matter of
public knowledge.

There are several ways developers can learn of a security problem:

	they notice it on a public forum (mailing list, web site, etc.)

	someone files a bug report

	someone informs them via private email

In the first two cases, the information is public and it is important to
have a fix as soon as possible. In the last case, however, it might not
be public information. In that case there are a few possible options for
dealing with the problem:

	If the security exposure is minor, there is sometimes no need to keep
the problem a secret and a fix should be made and released.

	If the problem is severe, it is preferable to share the information
with other vendors and coordinate a release. The security team keeps
in contact with the various organizations and individuals and can
take care of that.

In all cases if the person who reports the problem asks that it not be
disclosed, such requests should be honored, with the obvious exception
of informing the security team in order that a fix may be produced for a
stable release of Debian. When sending confidential information to the
security team, be sure to mention this fact.

Please note that if secrecy is needed you may not upload a fix to
unstable (or anywhere else, such as a public VCS repository). It is
not sufficient to obfuscate the details of the change, as the code
itself is public, and can (and will) be examined by the general public.

There are two reasons for releasing information even though secrecy is
requested: the problem has been known for a while, or the problem or
exploit has become public.

The Security Team has a PGP-key to enable encrypted communication about
sensitive issues. See the Security Team
FAQ [https://www.debian.org/security/faq#contact] for details.

5.8.5.3. Security Advisories

Security advisories are only issued for the current, released stable
distribution, and not for testing or unstable. When released,
advisories are sent to the debian-security-announce@lists.debian.org
mailing list and posted on the security web
page [https://www.debian.org/security/]. Security advisories are
written and posted by the security team. However they certainly do not
mind if a maintainer can supply some of the information for them, or
write part of the text. Information that should be in an advisory
includes:

	A description of the problem and its scope, including:

	The type of problem (privilege escalation, denial of service,
etc.)

	What privileges may be gained, and by whom (if any)

	How it can be exploited

	Whether it is remotely or locally exploitable

	How the problem was fixed

This information allows users to assess the threat to their systems.

	Version numbers of affected packages

	Version numbers of fixed packages

	Information on where to obtain the updated packages (usually from the
Debian security archive)

	References to upstream advisories, CVE [https://cve.mitre.org]
identifiers, and any other information useful in cross-referencing
the vulnerability

5.8.5.4. Preparing packages to address security issues

One way that you can assist the security team in their duties is to
provide them with fixed packages suitable for a security advisory for
the stable Debian release.

When an update is made to the stable release, care must be taken to
avoid changing system behavior or introducing new bugs. In order to do
this, make as few changes as possible to fix the bug. Users and
administrators rely on the exact behavior of a release once it is made,
so any change that is made might break someone's system. This is
especially true of libraries: make sure you never change the API
(Application Program Interface) or ABI (Application Binary Interface),
no matter how small the change.

This means that moving to a new upstream version is not a good solution.
Instead, the relevant changes should be back-ported to the version
present in the current stable Debian release. Generally, upstream
maintainers are willing to help if needed. If not, the Debian security
team may be able to help.

In some cases, it is not possible to back-port a security fix, for
example when large amounts of source code need to be modified or
rewritten. If this happens, it may be necessary to move to a new
upstream version. However, this is only done in extreme situations, and
you must always coordinate that with the security team beforehand.

Related to this is another important guideline: always test your
changes. If you have an exploit available, try it and see if it indeed
succeeds on the unpatched package and fails on the fixed package. Test
other, normal actions as well, as sometimes a security fix can break
seemingly unrelated features in subtle ways.

Do NOT include any changes in your package which are not directly
related to fixing the vulnerability. These will only need to be
reverted, and this wastes time. If there are other bugs in your package
that you would like to fix, make an upload to proposed-updates in the
usual way, after the security advisory is issued. The security update
mechanism is not a means for introducing changes to your package which
would otherwise be rejected from the stable release, so please do not
attempt to do this.

Review and test your changes as much as possible. Check the differences
from the previous version repeatedly (interdiff from the
patchutils package and debdiff from devscripts are useful
tools for this, see debdiff).

Be sure to verify the following items:

	Target the right distribution in your debian/changelog:
codename-security (e.g. trixie-security).
Do not target distribution-proposed-updates or stable!

	Make descriptive, meaningful changelog entries. Others will rely on
them to determine whether a particular bug was fixed. Add closes:
statements for any Debian bugs filed. Always include an external
reference, preferably a CVE identifier, so that it can be
cross-referenced. However, if a CVE identifier has not yet been
assigned, do not wait for it but continue the process. The identifier
can be cross-referenced later.

	Make sure the version number is proper. It must be greater than
the current package, but less than package versions in later
distributions. If in doubt, test it with dpkg
--compare-versions. Be careful not to re-use a version number that
you have already used for a previous upload, or one that conflicts
with a binNMU. The convention is to append +debXu1
(where X is the major release number), e.g.
1:2.4.3-4+deb13u1, of course increasing 1 for
any subsequent uploads.

	Unless the upstream source has been uploaded to
security.debian.org before (by a previous security update), build
the upload with full upstream source (dpkg-buildpackage -sa).
If there has been a previous upload to security.debian.org with
the same upstream version, you may upload without upstream source
(dpkg-buildpackage
-sd).

	Be sure to use the exact same ``*.orig.tar.{gz,bz2,xz}`` as used
in the normal archive, otherwise it is not possible to move the
security fix into the main archives later.

	Build the package on a clean system which only has packages
installed from the distribution you are building for. If you do not
have such a system yourself, you can use a debian.org machine (see
Debian machines) or setup a chroot (see
pbuilder and debootstrap).

5.8.5.5. Uploading the fixed package

Do NOT upload a package to the security upload queue (on
*.security.upload.debian.org) without prior authorization from the
security team. If the package does not exactly meet the team's
requirements, it will cause many problems and delays in dealing with the
unwanted upload.

Do NOT upload your fix to proposed-updates without coordinating
with the security team. Packages from security.debian.org will be
copied into the proposed-updates directory automatically. If a
package with the same or a higher version number is already installed
into the archive, the security update will be rejected by the archive
system. That way, the stable distribution will end up without a security
update for this package instead.

Once you have created and tested the new package and it has been
approved by the security team, it needs to be uploaded so that it can be
installed in the archives. For security uploads, the place to upload to
is ftp://ftp.security.upload.debian.org/pub/SecurityUploadQueue/.

Once an upload to the security queue has been accepted, the package will
automatically be built for all architectures and stored for verification
by the security team.

Uploads that are waiting for acceptance or verification are only
accessible by the security team. This is necessary since there might be
fixes for security problems that cannot be disclosed yet.

If a member of the security team accepts a package, it will be installed
on security.debian.org as well as proposed for the proper
distribution-proposed-updates on ftp-master.debian.org.

5.9. Moving, removing, renaming, orphaning, adopting, and reintroducing packages

Some archive manipulation operations are not automated in the Debian
upload process. These procedures should be manually followed by
maintainers. This chapter gives guidelines on what to do in these cases.

5.9.1. Moving packages

Sometimes a package will change its section. For instance, a package
from the non-free section might be GPL'd in a later version, in
which case the package should be moved to main or contrib. [1]

If you need to change the section for one of your packages, change the
package control information to place the package in the desired section,
and re-upload the package (see the Debian Policy
Manual [https://www.debian.org/doc/debian-policy/] for details). You
must ensure that you include the .orig.tar.{gz,bz2,xz} in your
upload (even if you are not uploading a new upstream version), or it
will not appear in the new section together with the rest of the
package. If your new section is valid, it will be moved automatically.
If it does not, then contact the ftpmasters in order to understand what
happened.

If, on the other hand, you need to change the subsection of one of
your packages (e.g., devel, admin), the procedure is slightly
different. Correct the subsection as found in the control file of the
package, and re-upload that. Also, you'll need to get the override file
updated, as described in Specifying the package section, subsection and priority.

5.9.2. Removing packages

If for some reason you want to completely remove a package (say, if it
is an old compatibility library which is no longer required), you need
to file a bug against ftp.debian.org asking that the package be
removed; as with all bugs, this bug should normally have normal
severity. The bug title should be in the form
RM: package [architecture list] -- reason, where package
is the package to be removed and reason is a short summary of the
reason for the removal request. [architecture list] is optional and
only needed if the removal request only applies to some architectures,
not all. Note that the reportbug will create a title conforming to
these rules when you use it to report a bug against the
ftp.debian.org pseudo-package.

If you want to remove a package you maintain, you should note this in
the bug title by prepending ROM (Request Of Maintainer). There are
several other standard acronyms used in the reasoning for a package
removal; see https://ftp-master.debian.org/removals.html for a
complete list. That page also provides a convenient overview of pending
removal requests.

Note that removals can only be done for the unstable,
experimental and stable distributions. Packages are not removed
from testing directly. Rather, they will be removed automatically
after the package has been removed from unstable and no package in
testing depends on it. (Removals from testing are possible
though by filing a removal bug report against the release.debian.org
pseudo-package. See Removals from testing.)

There is one exception when an explicit removal request is not
necessary: If a (source or binary) package is no longer built from
source, it will be removed semi-automatically. For a binary-package,
this means if there is no longer any source package producing this
binary package; if the binary package is just no longer produced on some
architectures, a removal request is still necessary. For a
source-package, this means that all binary packages it refers to have
been taken over by another source package.

In your removal request, you have to detail the reasons justifying the
request. This is to avoid unwanted removals and to keep a trace of why a
package has been removed. For example, you can provide the name of the
package that supersedes the one to be removed.

Usually you only ask for the removal of a package maintained by
yourself. If you want to remove another package, you have to get the
approval of its maintainer. Should the package be orphaned and thus have
no maintainer, you should first discuss the removal request on
debian-qa@lists.debian.org. If there is a consensus that the package
should be removed, you should reassign and retitle the O: bug filed
against the wnpp package instead of filing a new bug as removal
request.

Further information relating to these and other package removal related
topics may be found at https://wiki.debian.org/ftpmaster_Removalsand https://qa.debian.org/howto-remove.html.

If in doubt concerning whether a package is disposable, email
debian-devel@lists.debian.org asking for opinions. Also of interest
is the apt-cache program from the apt package. When invoked as
apt-cache showpkg package, the program will show details for package,
including reverse depends. Other useful programs include
apt-cache rdepends, apt-rdepends, build-rdeps (in the
devscripts package) and grep-dctrl. Removal of orphaned packages
is discussed on debian-qa@lists.debian.org.

Once the package has been removed, the package's bugs should be handled.
They should either be reassigned to another package in the case where
the actual code has evolved into another package (e.g. libfoo12 was
removed because libfoo13 supersedes it) or closed if the software is
simply no longer part of Debian. When closing the bugs, to avoid marking
the bugs as fixed in versions of the packages in previous Debian
releases, they should be marked as fixed in the version
<most-recent-version-ever-in-Debian>+rm.

5.9.2.1. Removing packages from Incoming

In the past, it was possible to remove packages from incoming.
However, with the introduction of the new incoming system, this is no
longer possible. [4] Instead, you have to upload a new revision of your
package with a higher version than the package you want to replace. Both
versions will be installed in the archive but only the higher version
will actually be available in unstable since the previous version
will immediately be replaced by the higher. However, if you do proper
testing of your packages, the need to replace a package should not occur
too often anyway.

5.9.3. Replacing or renaming packages

When the upstream maintainers for one of your packages chose to rename
their software (or you made a mistake naming your package), you should
follow a two-step process to rename it. In the first step, change the
debian/control file to reflect the new name and to replace, provide
and conflict with the obsolete package name (see the Debian Policy
Manual [https://www.debian.org/doc/debian-policy/] for details).
Please note that you should only add a Provides relation if all
packages depending on the obsolete package name continue to work after
the renaming. Once you've uploaded the package and the package has moved
into the archive, file a bug against ftp.debian.org asking to remove
the package with the obsolete name (see Removing packages). Do not forget to properly reassign the
package's bugs at the same time.

At other times, you may make a mistake in constructing your package and
wish to replace it. The only way to do this is to increase the version
number and upload a new version. The old version will be expired in the
usual manner. Note that this applies to each part of your package,
including the sources: if you wish to replace the upstream source
tarball of your package, you will need to upload it with a different
version. An easy possibility is to replace foo_1.00.orig.tar.gz with
foo_1.00+0.orig.tar.gz or foo_1.00.orig.tar.bz2. This
restriction gives each file on the ftp site a unique name, which helps
to ensure consistency across the mirror network.

5.9.4. Orphaning a package

If you can no longer maintain a package, you need to inform others, and
see that the package is marked as orphaned. You should set the package
maintainer to Debian QA Group <packages@qa.debian.org> and submit a
bug report against the pseudo package wnpp. The bug report should be
titled O: package -- short description indicating that
the package is now orphaned. The severity of the bug should be set to
normal; if the package has a priority of standard or higher, it
should be set to important. If you feel it's necessary, send a copy to
debian-devel@lists.debian.org by putting the address in the
X-Debbugs-CC: header of the message (no, don't use CC:, because that way
the message's subject won't indicate the bug number).

If you just intend to give the package away, but you can keep
maintainership for the moment, then you should instead submit a bug
against wnpp and title it RFA: package -- short
description. RFA stands for Request For Adoption.

More information is on the WNPP web
pages [https://www.debian.org/devel/wnpp/].

5.9.5. Adopting a package

A list of packages in need of a new maintainer is available in the
Work-Needing and Prospective Packages list
(WNPP) [https://www.debian.org/devel/wnpp/]. If you wish to take over
maintenance of any of the packages listed in the WNPP, please take a
look at the aforementioned page for information and procedures.

It is not OK to simply take over a package without assent of the current
maintainer — that would be package hijacking. You can, of course,
contact the current maintainer and ask them for permission to take over
the package.

However, when a package has been neglected by the maintainer, you might
be able to take over package maintainership by following the package
salvaging process as described in Package Salvaging. If you have reason to believe a
maintainer is no longer active at all, see Dealing with inactive and/or unreachable maintainers.

Complaints about maintainers should be brought up on the developers'
mailing list. If the discussion doesn't end with a positive conclusion,
and the issue is of a technical nature, consider bringing it to the
attention of the technical committee (see the technical committee web
page [https://www.debian.org/devel/tech-ctte] for more information).

If you take over an old package, you probably want to be listed as the
package's official maintainer in the bug system. This will happen
automatically once you upload a new version with an updated
Maintainer field, although it can take a few hours after the upload
is done. If you do not expect to upload a new version for a while, you
can use The Debian Package Tracker to get the bug reports. However, make
sure that the old maintainer has no problem with the fact that they will
continue to receive the bugs during that time.

5.9.6. Reintroducing packages

Packages are often removed due to release-critical bugs, absent
maintainers, too few users or poor quality in general. While the process
of reintroduction is similar to the initial packaging process, you can
avoid some pitfalls by doing some historical research first.

You should check why the package was removed in the first place. This
information can be found in the removal item in the news section of the
PTS page for the package or by browsing the log of
removals [https://ftp-master.debian.org/#removed]. The removal bug
will tell you why the package was removed and will give some indication
of what you will need to work on in order to reintroduce the package. It
may indicate that the best way forward is to switch to some other piece
of software instead of reintroducing the package.

It may be appropriate to contact the former maintainers to find out if
they are working on reintroducing the package, interested in
co-maintaining the package or interested in sponsoring the package if
needed.

You should do all the things required before introducing new packages
(New packages).

You should base your work on the latest packaging available that is
suitable. That might be the latest version from unstable, which will
still be present in the snapshot
archive [https://snapshot.debian.org/].

The version control system used by the previous maintainer might contain
useful changes, so it might be a good idea to have a look there. Check
if the control file of the previous package contained any headers
linking to the version control system for the package and if it still
exists.

Package removals from unstable (not testing, stable or
oldstable) trigger the closing of all bugs related to the package.
You should look through all the closed bugs (including archived bugs)
and unarchive and reopen any that were closed in a version ending in
+rm and still apply. Any that no longer apply should be marked as
fixed in the correct version if that is known.

Package removals from unstable also trigger marking the package as
removed in the Debian Security Tracker. Debian members should
mark removed issues as unfixed [https://security-team.debian.org/security_tracker.html#removed-packages]
in the security tracker repository and all others should contact the
security team to report reintroduced
packages [https://security-tracker.debian.org/tracker/data/report].

5.10. Porting and being ported

Debian supports an ever-increasing number of architectures. Even if you
are not a porter, and you don't use any architecture but one, it is part
of your duty as a maintainer to be aware of issues of portability.
Therefore, even if you are not a porter, you should read most of this
chapter.

Porting is the act of building Debian packages for architectures that
are different from the original architecture of the package maintainer's
binary package. It is a unique and essential activity. In fact, porters
do most of the actual compiling of Debian packages. For instance, when a
maintainer uploads a (portable) source package with binaries for the
i386 architecture, it will be built for each of the other
architectures, amounting to 10 more builds.

5.10.1. Being kind to porters

Porters have a difficult and unique task, since they are required to
deal with a large volume of packages. Ideally, every source package
should build right out of the box. Unfortunately, this is often not the
case. This section contains a checklist of gotchas often committed by
Debian maintainers — common problems which often stymie porters, and
make their jobs unnecessarily difficult.

The first and most important thing is to respond quickly to bugs or
issues raised by porters. Please treat porters with courtesy, as if they
were in fact co-maintainers of your package (which, in a way, they are).
Please be tolerant of succinct or even unclear bug reports; do your best
to hunt down whatever the problem is.

By far, most of the problems encountered by porters are caused by
packaging bugs in the source packages. Here is a checklist of things
you should check or be aware of.

	Make sure that your Build-Depends and Build-Depends-Indep
settings in debian/control are set properly. The best way to
validate this is to use the debootstrap package to create an
unstable chroot environment (see debootstrap). Within
that chrooted environment, install the build-essential package
and any package dependencies mentioned in Build-Depends and/or
Build-Depends-Indep. Finally, try building your package within
that chrooted environment. These steps can be automated by the use of
the pbuilder program, which is provided by the package of the
same name (see pbuilder).

If you can't set up a proper chroot, dpkg-depcheck may be of
assistance (see dpkg-depcheck).

See the Debian Policy
Manual [https://www.debian.org/doc/debian-policy/] for
instructions on setting build dependencies.

	Don't set architecture to a value other than all or any
unless you really mean it. In too many cases, maintainers don't
follow the instructions in the Debian Policy
Manual [https://www.debian.org/doc/debian-policy/]. Setting your
architecture to only one architecture (such as i386 or amd64)
is usually incorrect.

	Make sure your source package is correct. Do
dpkg-source -x package.dsc to make sure your source
package unpacks properly. Then, in there, try building your package
from scratch with dpkg-buildpackage.

	Make sure you don't ship your source package with the
debian/files or debian/substvars files. They should be
removed by the clean target of debian/rules.

	Make sure you don't rely on locally installed or hacked
configurations or programs. For instance, you should never be calling
programs in /usr/local/bin or the like. Try not to rely on
programs being set up in a special way. Try building your package on
another machine, even if it's the same architecture.

	Don't depend on the package you're building being installed already
(a sub-case of the above issue). There are, of course, exceptions to
this rule, but be aware that any case like this needs manual
bootstrapping and cannot be done by automated package builders.

	Don't rely on the compiler being a certain version, if possible. If
not, then make sure your build dependencies reflect the restrictions,
although you are probably asking for trouble, since different
architectures sometimes standardize on different compilers.

	Make sure your debian/rules contains separate binary-arch and
binary-indep targets, as the Debian Policy Manual requires. Make
sure that both targets work independently, that is, that you can call
the target without having called the other before. To test this, try
to run dpkg-buildpackage -B.

	When you can't support your package on a particular architecture, you
shouldn't use the Architecture field to reflect that (it's also a pain to
maintain correctly). If the package fails to build from source, you can just
let it be and interested people can take a look at the build logs. If the
package would actually build, the trick is to add a Build-Depends on
unsupported-architecture [!the-not-supported-arch]. The buildds will not
build the package as the build dependencies are not fulfilled on that
arch. To prevent building on 32-bits architectures, the
architecture-is-64-bit build dependency can be used, as
architecture-is-little-endian can be used to prevent building on big
endian systems.

5.10.2. Guidelines for porter uploads

If the package builds out of the box for the architecture to be ported
to, you are in luck and your job is easy. This section applies to that
case; it describes how to build and upload your binary package so that
it is properly installed into the archive. If you do have to patch the
package in order to get it to compile for the other architecture, you
are actually doing a source NMU, so consult When and how to do an NMU instead.

For a porter upload, no changes are being made to the source. You do not
need to touch any of the files in the source package. This includes
debian/changelog.

The way to invoke dpkg-buildpackage is as dpkg-buildpackage -B
-m porter-email. Of course, set porter-email to your email
address. This will do a binary-only build of only the
architecture-dependent portions of the package, using the
binary-arch target in debian/rules.

If you are working on a Debian machine for your porting efforts and you
need to sign your upload locally for its acceptance in the archive, you
can run debsign on your .changes file to have it signed
conveniently, or use the remote signing mode of dpkg-sig.

5.10.2.1. Recompilation or binary-only NMU

Sometimes the initial porter upload is problematic because the
environment in which the package was built was not good enough (outdated
or obsolete library, bad compiler, etc.). Then you may just need to
recompile it in an updated environment. However, you have to bump the
version number in this case, so that the old bad package can be replaced
in the Debian archive (dak refuses to install new packages if they
don't have a version number greater than the currently available one).

You have to make sure that your binary-only NMU doesn't render the
package uninstallable. This could happen when a source package generates
arch-dependent and arch-independent packages that have
inter-dependencies generated using dpkg's substitution variable
$(Source-Version).

Despite the required modification of the changelog, these are called
binary-only NMUs — there is no need in this case to trigger all other
architectures to consider themselves out of date or requiring
recompilation.

Such recompilations require special magic version numbering, so that
the archive maintenance tools recognize that, even though there is a new
Debian version, there is no corresponding source update. If you get this
wrong, the archive maintainers will reject your upload (due to lack of
corresponding source code).

The magic for a recompilation-only NMU is triggered by using a suffix
appended to the package version number, following the form
bnumber. For instance, if the latest version you are recompiling
against was version 2.9-3, your binary-only NMU should carry a
version of 2.9-3+b1. If the latest version was 3.4+b1 (i.e, a
native package with a previous recompilation NMU), your binary-only NMU
should have a version number of 3.4+b2. [2]

Similar to initial porter uploads, the correct way of invoking
dpkg-buildpackage is dpkg-buildpackage -B to only build the
architecture-dependent parts of the package.

5.10.2.2. When to do a source NMU if you are a porter

Porters doing a source NMU generally follow the guidelines found in
Non-Maintainer Uploads (NMUs), just like non-porters.
However, it is expected that the wait cycle for a porter's source NMU is
smaller than for a non-porter, since porters have to cope with a large
quantity of packages. Again, the situation varies depending on the
distribution they are uploading to. It also varies whether the
architecture is a candidate for inclusion into the next stable release;
the release managers decide and announce which architectures are
candidates.

If you are a porter doing an NMU for unstable, the above guidelines
for porting should be followed, with two variations. Firstly, the
acceptable waiting period — the time between when the bug is submitted
to the BTS and when it is OK to do an NMU — is seven days for porters
working on the unstable distribution. This period can be shortened
if the problem is critical and imposes hardship on the porting effort,
at the discretion of the porter group. (Remember, none of this is
Policy, just mutually agreed upon guidelines.) For uploads to stable
or testing, please coordinate with the appropriate release team
first.

Secondly, porters doing source NMUs should make sure that the bug they
submit to the BTS should be of severity serious or greater. This
ensures that a single source package can be used to compile every
supported Debian architecture by release time. It is very important that
we have one version of the binary and source package for all
architectures in order to comply with many licenses.

Porters should try to avoid patches which simply kludge around bugs in
the current version of the compile environment, kernel, or libc.
Sometimes such kludges can't be helped. If you have to kludge around
compiler bugs and the like, make sure you #ifdef your work properly;
also, document your kludge so that people know to remove it once the
external problems have been fixed.

Porters may also have an unofficial location where they can put the
results of their work during the waiting period. This helps others
running the port have the benefit of the porter's work, even during the
waiting period. Of course, such locations have no official blessing or
status, so buyer beware.

5.10.3. Porting infrastructure and automation

There is infrastructure and several tools to help automate package
porting. This section contains a brief overview of this automation and
porting to these tools; see the package documentation or references for
full information.

5.10.3.1. Mailing lists and web pages

Web pages containing the status of each port can be found at
https://www.debian.org/ports/.

Each port of Debian has a mailing list. The list of porting mailing
lists can be found at https://lists.debian.org/ports.html. These
lists are used to coordinate porters, and to connect the users of a
given port with the porters.

5.10.3.2. Porter tools

Descriptions of several porting tools can be found in
Porting tools.

5.10.3.3. wanna-build

The wanna-build system is used as a distributed, client-server build
distribution system. It is usually used in conjunction with build
daemons running the buildd program. Build daemons are slave
hosts, which contact the central wanna-build system to receive a
list of packages that need to be built.

wanna-build is not yet available as a package; however, all Debian
porting efforts are using it for automated package building. The tool
used to do the actual package builds, sbuild, is available as a
package; see its description in sbuild. Please note that the
packaged version is not the same as the one used on build daemons, but
it is close enough to reproduce problems.

Most of the data produced by wanna-build that is generally useful to
porters is available on the web at https://buildd.debian.org/.
This data includes nightly updated statistics, queueing information and
logs for build attempts.

We are quite proud of this system, since it has so many possible uses.
Independent development groups can use the system for different
sub-flavors of Debian, which may or may not really be of general
interest (for instance, a flavor of Debian built with gcc bounds
checking). It will also enable Debian to recompile entire distributions
quickly.

The wanna-build team, in charge of the buildds, can be reached at
debian-wb-team@lists.debian.org. To determine who (wanna-build team,
release team) and how (mail, BTS) to contact, refer to
https://lists.debian.org/debian-project/2009/03/msg00096.html.

When requesting binNMUs or give-backs (retries after a failed build),
please use the format described at
https://release.debian.org/wanna-build.txt.

5.10.4. When your package is not portable

Some packages still have issues with building and/or working on some of
the architectures supported by Debian, and cannot be ported at all, or
not within a reasonable amount of time. An example is a package that is
SVGA-specific (only available for i386 and amd64), or uses other
hardware-specific features not supported on all architectures.

In order to prevent broken packages from being uploaded to the archive,
and wasting buildd time, you need to do a few things:

	First, make sure your package does fail to build on architectures
that it cannot support. There are a few ways to achieve this. The
preferred way is to have a small testsuite during build time that
will test the functionality, and fail if it doesn't work. This is a
good idea anyway, as this will prevent (some) broken uploads on all
architectures, and also will allow the package to build as soon as
the required functionality is available.

Additionally, if you believe the list of supported architectures is
pretty constant, you should change any to a list of supported
architectures in debian/control. This way, the build will fail
also, and indicate this to a human reader without actually trying.

	In order to prevent autobuilders from needlessly trying to build your
package, it must be included in Packages-arch-specific, a list
used by the wanna-build script. The current version is available
as https://wiki.debian.org/PackagesArchSpecific; please see
the top of the file for whom to contact for changes.

Please note that it is insufficient to only add your package to
Packages-arch-specific without making it fail to build on
unsupported architectures: A porter or any other person trying to build
your package might accidentally upload it without noticing it doesn't
work. If in the past some binary packages were uploaded on unsupported
architectures, request their removal by filing a bug against
ftp.debian.org.

5.10.5. Marking non-free packages as auto-buildable

By default packages from the non-free and non-free-firmware
sections are not built by the autobuilder network (mostly because
the license of the packages could disapprove). To enable a package
to be built, you need to perform the following steps:

	Check whether it is legally allowed and technically possible to
auto-build the package;

	Add XS-Autobuild: yes into the header part of debian/control;

	Send an email to non-free@buildd.debian.org and explain why the
package can legitimately and technically be auto-built.

5.11. Non-Maintainer Uploads (NMUs)

Every package has one or more maintainers. Normally, these are the
people who work on and upload new versions of the package. In some
situations, it is useful that other developers can upload a new version
as well, for example if they want to fix a bug in a package they don't
maintain, when the maintainer needs help to respond to issues. Such
uploads are called Non-Maintainer Uploads (NMU).

5.11.1. When and how to do an NMU

Before doing an NMU, consider the following questions:

	Have you geared the NMU towards helping the maintainer? As there
might be disagreement on the notion of whether the maintainer
actually needs help or not, the DELAYED queue exists to give time to
the maintainer to react and has the beneficial side-effect of
allowing for independent reviews of the NMU diff.

	Does your NMU really fix bugs? ("Bugs" means any kind of bugs, e.g.
wishlist bugs for packaging a new upstream version, but care should
be taken to minimize the impact to the maintainer.) Using NMUs to make
changes that are likely to be non-consensual is discouraged.

	As more specific examples, the following changes are generally
considered acceptable, unless there are good reasons for not following
those practices in a particular package: using the latest released
debhelper compatibility level; using dh; using 3.0 (quilt); using
lintian-brush.

	Did you give enough time to the maintainer? When was the bug reported
to the BTS? Being busy for a week or two isn't unusual. Is the bug so
severe that it needs to be fixed right now, or can it wait a few more
days?

	How confident are you about your changes? Please remember the
Hippocratic Oath: "Above all, do no harm." It is better to leave a
package with an open grave bug than applying a non-functional patch,
or one that hides the bug instead of resolving it. If you are not
100% sure of what you did, it might be a good idea to seek advice
from others. Remember that if you break something in your NMU, many
people will be very unhappy about it.

	Have you clearly expressed your intention to NMU, at least in the
BTS? If that didn't generate any feedback, it might also be a good
idea to try to contact the maintainer by other means (email to the
maintainer addresses or private email, IRC).

	If the maintainer is usually active and responsive, have you tried to
contact them? In general it should be considered preferable that
maintainers take care of an issue themselves and that they are given
the chance to review and correct your patch, because they can be
expected to be more aware of potential issues which an NMUer might
miss. It is often a better use of everyone's time if the maintainer
is given an opportunity to upload a fix on their own.

When doing an NMU, you must first make sure that your intention to NMU
is clear. Then, you must send a patch with the differences between the
current package and your proposed NMU to the BTS. The nmudiff script
in the devscripts package might be helpful.

While preparing the patch, you had better be aware of any
package-specific practices that the maintainer might be using. Taking
them into account reduces the burden of integrating your changes into
the normal package workflow and thus increases the chances that
integration will happen. A good place to look for possible
package-specific practices is
debian/README.source [https://www.debian.org/doc/debian-policy/ch-source.html#s-readmesource].

Unless you have an excellent reason not to do so, you must then give
some time to the maintainer to react (for example, by uploading to the
DELAYED queue). Here are some recommended values to use for delays:

	Upload fixing only release-critical bugs older than 7 days, with no
maintainer activity on the bug for 7 days and no indication that a
fix is in progress: 0 days

	Upload fixing only release-critical bugs older than 7 days: 2 days

	Upload fixing only release-critical and important bugs: 5 days

	Other NMUs: 15 days

Those delays are only examples. In some cases, such as uploads fixing
security issues, or fixes for trivial bugs that block a transition, it
is desirable that the fixed package reaches unstable sooner.

Sometimes, release managers decide to encourage NMUs with shorter delays for
a subset of bugs (e.g release-critical bugs older than 7 days). Also,
some maintainers list themselves in the Low Threshold NMU
list [https://wiki.debian.org/LowThresholdNmu], and accept that NMUs
are uploaded without delay. But even in those cases, it's still a good
idea to give the maintainer a few days to react before you upload,
especially if the patch wasn't available in the BTS before, or if you
know that the maintainer is generally active.

After you upload an NMU, you are responsible for the possible problems
that you might have introduced. You must keep an eye on the package
(subscribing to the package on the PTS is a good way to achieve this).

This is not a license to perform NMUs thoughtlessly. If you NMU when it
is clear that the maintainers are active and would have acknowledged a
patch in a timely manner, or if you ignore the recommendations of this
document, your upload might be a cause of conflict with the maintainer.
You should always be prepared to defend the wisdom of any NMU you
perform on its own merits.

5.11.2. NMUs and debian/changelog

Just like any other (source) upload, NMUs must add an entry to
debian/changelog, telling what has changed with this upload. The
first line of this entry must explicitly mention that this upload is an
NMU, e.g.:

* Non-maintainer upload.

The way to version NMUs differs for native and non-native packages.

If the package is a native package (without a Debian revision in the
version number), the version must be the version of the last maintainer
upload, plus +nmuX, where X is a counter starting at 1. If
the last upload was also an NMU, the counter should be increased. For
example, if the current version is 1.5, then an NMU would get
version 1.5+nmu1.

If the package is not a native package, you should add a minor version
number to the Debian revision part of the version number (the portion
after the last hyphen). This extra number must start at 1. For
example, if the current version is 1.5-2, then an NMU would get
version 1.5-2.1. If a new upstream version is packaged in the NMU,
the Debian revision is set to 0, for example 1.6-0.1.

In both cases, if the last upload was also an NMU, the counter should be
increased. For example, if the current version is 1.5+nmu3 (a native
package which has already been NMUed), the NMU would get version
1.5+nmu4.

A special versioning scheme is needed to avoid disrupting the
maintainer's work, since using an integer for the Debian revision will
potentially conflict with a maintainer upload already in preparation at
the time of an NMU, or even one sitting in the ftp NEW queue. It also
has the benefit of making it visually clear that a package in the
archive was not made by the official maintainer.

If you upload a package to testing or stable, you sometimes need to
"fork" the version number tree. This is the case for security uploads,
for example. For this, a version of the form +debXuY
should be used, where X is the major release number, and Y is a
counter starting at 1. For example, while trixie
(Debian 13) is stable, a security NMU to stable for a
package at version 1.5-3 would have version
1.5-3+deb13u1, whereas a security upload to
forky would get version
1.5-3+deb14u1.

5.11.3. Using the DELAYED/ queue

Having to wait for a response after you request permission to NMU is
inefficient, because it costs the NMUer a context switch to come back to
the issue. The DELAYED queue (see Delayed uploads) allows the developer doing the NMU to
perform all the necessary tasks at the same time. For instance, instead
of telling the maintainer that you will upload the updated package in 7
days, you should upload the package to DELAYED/7 and tell the
maintainer that they have 7 days to react. During this time, the
maintainer can ask you to delay the upload some more, or cancel your
upload.

You can cancel your upload using dcut. In case you uploaded
foo_1.2-1.1_all.changes to a DELAYED queue, you can run dcut cancel
foo_1.2-1.1_all.changes to cancel your upload. The .changes file
does not need to be present locally as you instruct dcut to upload a
command file removing a remote filename. The .changes file name is the same
that you used when uploading.

The DELAYED queue should not be used to put additional pressure on
the maintainer. In particular, it's important that you are available to
cancel or delay the upload before the delay expires since the maintainer
cannot cancel the upload themselves.

If you make an NMU to DELAYED and the maintainer updates the package
before the delay expires, your upload will be rejected because a newer
version is already available in the archive. Ideally, the maintainer
will take care to include your proposed changes (or at least a solution
for the problems they address) in that upload.

5.11.4. NMUs from the maintainer's point of view

When someone NMUs your package, this means they want to help you to keep
it in good shape. This gives users fixed packages faster. You can
consider asking the NMUer to become a co-maintainer of the package.
Receiving an NMU on a package is not a bad thing; it just means that the
package is interesting enough for other people to work on it.

To acknowledge an NMU, include its changes and changelog entry in your
next maintainer upload. If you do not acknowledge the NMU by including
the NMU changelog entry in your changelog, the bugs will remain closed
in the BTS but will be listed as affecting your maintainer version of
the package.

Note that if you ever need to revert a NMU that packages a new upstream
version, it is recommended to use a fake upstream version like
CURRENT+reallyFORMER until one can upload the latest version
again. More information can be found in
https://www.debian.org/doc/debian-policy/ch-controlfields.html#epochs-should-be-used-sparingly.

Note that easiest way to both check if your package has been NMUed, and also
automatically download and commit the changes into a git-buildpackage maintained
git repository is to run gbp import-dsc --verbose --pristine-tar
apt:<package>/sid. This example command assumes you are working on the
debian/latest branch preparing the next upload to Debian unstable, and it
assumes your apt has the deb-src line active for Debian unstable.

5.11.5. Source NMUs vs Binary-only NMUs (binNMUs)

The full name of an NMU is source NMU. There is also another type,
namely the binary-only NMU, or binNMU. A binNMU is also a package
upload by someone other than the package's maintainer. However, it is a
binary-only upload.

When a library (or other dependency) is updated, the packages using it
may need to be rebuilt. Since no changes to the source are needed, the
same source package is used.

BinNMUs are usually triggered on the buildds by wanna-build. An entry is
added to debian/changelog, explaining why the upload was needed and
increasing the version number as described in Recompilation or binary-only NMU. This entry should not be included
in the next upload.

Buildds upload packages for their architecture to the archive as
binary-only uploads. Strictly speaking, these are binNMUs. However, they
are not normally called NMU, and they don't add an entry to
debian/changelog.

5.11.6. NMUs vs QA uploads

NMUs are uploads of packages by somebody other than their assigned
maintainer. There is another type of upload where the uploaded package
is not yours: QA uploads. QA uploads are uploads of orphaned packages.

QA uploads are very much like normal maintainer uploads: they may fix
anything, even minor issues; the version numbering is normal, and there
is no need to use a delayed upload. The difference is that you are not
listed as the Maintainer or Uploader for the package. Also, the
changelog entry of a QA upload has a special first line:

* QA upload.

If you want to do an NMU, and it seems that the maintainer is not
active, it is wise to check if the package is orphaned (this information
is displayed on the package's Package Tracking System page). When doing
the first QA upload to an orphaned package, the maintainer should be set
to Debian QA Group
<packages@qa.debian.org>. Orphaned packages which did not yet have a
QA upload still have their old maintainer set. There is a list of them
at https://qa.debian.org/orphaned.html.

Instead of doing a QA upload, you can also consider adopting the package
by making yourself the maintainer. You don't need permission from
anybody to adopt an orphaned package; you can just set yourself as
maintainer and upload the new version (see Adopting a package).

5.11.7. NMUs vs team uploads

Sometimes you are fixing and/or updating a package because you are
member of a packaging team (which uses a mailing list as Maintainer
or Uploader; see Collaborative maintenance) but you don't want to add
yourself to Uploaders because you do not plan to contribute
regularly to this specific package. If it conforms with your team's
policy, you can perform a normal upload without being listed directly as
Maintainer or Uploader. In that case, you should start your
changelog entry with the following line:

* Team upload.

5.12. Package Salvaging

Package salvaging is the process by which one attempts to save a package
that, while not officially orphaned, appears poorly maintained or
completely unmaintained. This is a weaker and faster procedure than
orphaning a package officially through the powers of the MIA team.
Salvaging a package is not meant to replace MIA handling, and differs in
that it does not imply anything about the overall activity of a
maintainer. Instead, it handles a package maintainership transition for
a single package only, leaving any other package or Debian membership or
upload rights (when applicable) untouched.

Note that the process is only intended for actively taking over
maintainership. Do not start a package salvaging process when you do not
intend to maintain the package for a prolonged time. If you only want to
fix certain things, but not take over the package, you must use the NMU
process, even if the package would be eligible for salvaging. The NMU
process is explained in Non-Maintainer Uploads (NMUs).

Another important thing to remember: It is not acceptable to hijack
others' packages. If followed, this salvaging process will help you to
ensure that your endeavour is not a hijack but a (legal) salvaging
procedure, and you can counter any allegations of hijacking with a
reference to this process. Thanks to this process, new contributors
should no longer be afraid to take over packages that have been
neglected or entirely forgotten.

The process is split into two phases: In the first phase you determine
whether the package in question is eligible for the salvaging process.
Only when the eligibility has been determined you may enter the second
phase, the actual package salvaging.

For additional information, rationales and FAQs on package salvaging,
please visit the Salvaging
Packages [https://wiki.debian.org/PackageSalvaging] page on the
Debian wiki.

5.12.1. When a package is eligible for package salvaging

A package becomes eligible for salvaging when it has been neglected by
the current maintainer. To determine that a package has really been
neglected by the maintainer, the following indicators give a rough idea
what to look for:

	NMUs, especially if there has been more than one NMU in a row.

	Bugs filed against the package do not have answers from the
maintainer.

	Upstream has released several versions, but despite there being a bug
entry asking for it, it has not been packaged.

	There are QA issues with the package.

You will have to use your judgement as to whether a given combination
factors constitutes neglect; in case the maintainer disagrees they have
only to say so (see below). If you're not sure about your judgement or
simply want to be on the safe side, there is a more precise (and
conservative) set of conditions in the Package
Salvaging [https://wiki.debian.org/PackageSalvaging] wiki page. These
conditions represent a current Debian consensus on salvaging criteria.
In any case you should explain your reasons for thinking the package is
neglected when you file an Intent to Salvage bug later.

5.12.2. How to salvage a package

If and only if a package has been determined to be eligible for
package salvaging, any prospective maintainer may start the following
package salvaging procedure.

	Open a bug with the severity "important" against the package in
question, expressing the intent to take over maintainership of the
package. For this, the title of the bug should start with
ITS: package-name [3]. You may alternatively offer to only
take co-maintenance of the package. When you file the bug, you must
inform all maintainers, uploaders and if applicable the packaging
team explicitly by adding them to X-Debbugs-CC. Additionally, if
the maintainer(s) seem(s) to be generally inactive, please inform the
MIA team by adding mia@qa.debian.org to X-Debbugs-CC as well.
As well as the explicit expression of the intent to salvage, please
also take the time to document your assessment of the eligibility in
the bug report, for example by listing the criteria you've applied
and adding some data to make it easier for others to assess the
situation.

	In this step you need to wait in case any objections to the salvaging
are raised; the maintainer, any current uploader or any member of the
associated packaging team of the package in question may object
publicly in response to the bug you've filed within 21 days, and
this terminates the salvaging process.

The current maintainers may also agree to your intent to salvage by
filing a (signed) public response to the the bug. They might propose
that you become a co-maintainer instead of the sole maintainer. On
team maintained packages, a member of the associated team can accept
your salvaging proposal by sending out a signed agreement notice to
the ITS bug, alternatively inviting you to become a new co-maintainer
of the package. The team may require you to keep the package under
the team's umbrella, but then may ask or invite you to join the team.
In any of these cases where you have received the OK to proceed, you
can upload the new package immediately as the new (co-)maintainer,
without the need to utilise the DELAYED queue as described in the
next step.

	After the 21 days delay, if no answer has been sent to the bug from
the maintainer, one of the uploaders or team, you may upload the new
release of the package into the DELAYED queue with a minimum
delay of seven days. You should close the salvage bug in the
changelog and you must also send an nmudiff to the bug ensuring that
copies are sent to the maintainer and any uploaders (including teams)
of the package by CC'ing them in the mail to the BTS.

During the waiting time of the DELAYED queue, the maintainer can
accept the salvaging, do an upload themselves or (ask to) cancel the
upload. The latter two of these will also stop the salvaging process,
but the maintainer must reply to the salvaging bug with more
information about their action.

5.13. Collaborative maintenance

Collaborative maintenance is a term describing the sharing of Debian
package maintenance duties by several people. This collaboration is
almost always a good idea, since it generally results in higher quality
and faster bug fix turnaround times. It is strongly recommended that
packages with a priority of standard or which are part of the base
set have co-maintainers.

Generally there is a primary maintainer and one or more co-maintainers.
The primary maintainer is the person whose name is listed in the
Maintainer field of the debian/control file. Co-maintainers are
all the other maintainers, usually listed in the Uploaders field of
the debian/control file.

In its most basic form, the process of adding a new co-maintainer is
quite easy:

	Set up the co-maintainer with access to the sources you build the
package from. Generally this implies you are using a network-capable
version control system, such as Git. Salsa (see
salsa.debian.org: Git repositories and collaborative development platform) provides Git repositories, amongst other
collaborative tools.

	Add the co-maintainer's correct maintainer name and address to the
Uploaders field in the first paragraph of the debian/control
file.

Uploaders: John Buzz <jbuzz@debian.org>, Adam Rex <arex@debian.org>

	Using the PTS (The Debian Package Tracker), the co-maintainers should
subscribe themselves to the appropriate source package.

Another form of collaborative maintenance is team maintenance, which is
recommended if you maintain several packages with the same group of
developers. In that case, the Maintainer and Uploaders field of
each package must be managed with care. It is recommended to choose
between one of the two following schemes:

	Put the team member mainly responsible for the package in the
Maintainer field. In the Uploaders, put the mailing list
address, and the team members who care for the package.

	Put the mailing list address in the Maintainer field. In the
Uploaders field, put the team members who care for the package.
In this case, you must make sure the mailing list accepts bug reports
without any human interaction (like moderation for non-subscribers).

In any case, it is a bad idea to automatically put all team members in
the Uploaders field. It clutters the Developer's Package Overview
listing (see Developer's packages overview) with packages one doesn't really care for,
and creates a false sense of good maintenance. For the same reason, team
members do not need to add themselves to the Uploaders field just
because they are uploading the package once, they can do a “Team upload”
(see NMUs vs team uploads). Conversely, it is a
bad idea to keep a package with only the mailing list address as a
Maintainer and no Uploaders.

5.14. The testing distribution

5.14.1. Basics

Packages are usually installed into the testing distribution after
they have undergone some degree of testing in unstable.

They must be in sync on all architectures and mustn't have dependencies
that make them uninstallable; they also have to have generally no known
release-critical bugs at the time they're installed into testing.
This way, testing should always be close to being a release
candidate. Please see below for details.

5.14.2. Updates from unstable

The scripts that update the testing distribution are run twice each
day, right after the installation of the updated packages; these scripts
are called britney. They generate the Packages files for the
testing distribution, but they do so in an intelligent manner; they
try to avoid any inconsistency and to use only non-buggy packages.

The inclusion of a package from unstable is conditional on the
following:

	The package must have been available in unstable for a certain
number of days, see Selecting the upload urgency. Please note that
the urgency is sticky, meaning that the highest urgency uploaded
since the previous testing transition is taken into account;

	It must not have new release-critical bugs (RC bugs affecting the
version available in unstable, but not affecting the version in
testing);

	It must be available on all architectures on which it has previously
been built in unstable. The dak ls utility may be of interest
to check that information;

	It must not break any dependency of a package which is already
available in testing;

	The packages on which it depends must either be available in
testing or they must be accepted into testing at the same
time (and they will be if they fulfill all the necessary criteria);

	The phase of the project. I.e. automatic transitions are turned off
during the freeze of the testing distribution.

To find out whether a package is progressing into testing or not,
see the testing script output on the web page of the testing
distribution [https://www.debian.org/devel/testing], or use the
program grep-excuses which is in the devscripts package. This
utility can easily be used in a crontab 5 to keep yourself informed of
the progression of your packages into testing.

The update_excuses file does not always give the precise reason why
the package is refused; you may have to find it on your own by looking
for what would break with the inclusion of the package. The testing web
page [https://www.debian.org/devel/testing] gives some more
information about the usual problems which may be causing such troubles.

Sometimes, some packages never enter testing because the set of
interrelationship is too complicated and cannot be sorted out by the
scripts. See below for details.

Some further dependency analysis is shown on
https://release.debian.org/migration/ — but be warned: this page
also shows build dependencies that are not considered by britney.

5.14.2.1. Out-of-date

For the testing migration script, outdated means: There are
different versions in unstable for the release architectures (except
for the architectures in outofsync_arches; outofsync_arches is a list of
architectures that don't keep up (in britney.py), but currently,
it's empty). Outdated has nothing whatsoever to do with the
architectures this package has in testing.

Consider this example:

	
	alpha

	arm

	testing

	1

	-

	unstable

	1

	2

The package is out of date on alpha in unstable, and will not go
to testing. Removing the package would not help at all; the package
is still out of date on alpha, and will not propagate to
testing.

However, if ftp-master removes a package in unstable (here on
arm):

	
	alpha

	arm

	hurd-i386

	testing

	1

	1

	-

	unstable

	2

	-

	1

In this case, the package is up to date on all release architectures in
unstable (and the extra hurd-i386 doesn't matter, as it's not a
release architecture).

Sometimes, the question is raised if it is possible to allow packages in
that are not yet built on all architectures: No. Just plainly no.
(Except if you maintain glibc or so.)

5.14.2.2. Removals from testing

Sometimes, a package is removed to allow another package in: This
happens only to allow another package to go in if it's ready in every
other sense. Suppose e.g. that a cannot be installed with the new
version of b; then a may be removed to allow b in.

Of course, there is another reason to remove a package from testing:
it's just too buggy (and having a single RC-bug is enough to be in this
state).

Furthermore, if a package has been removed from unstable, and no
package in testing depends on it any more, then it will
automatically be removed.

5.14.2.3. Circular dependencies

A situation which is not handled very well by britney is if package
a depends on the new version of package b, and vice versa.

An example of this is:

	
	testing

	unstable

	a

	1; depends: b=1

	2; depends: b=2

	b

	1; depends: a=1

	2; depends: a=2

Neither package a nor package b is considered for update.

Currently, this requires some manual hinting from the release team.
Please contact them by sending mail to
debian-release@lists.debian.org if this happens to one of your
packages.

5.14.2.4. Influence of package in testing

Generally, there is nothing that the status of a package in testing
means for transition of the next version from unstable to
testing, with two exceptions: If the RC-bugginess of the package
goes down, it may go in even if it is still RC-buggy. The second
exception is if the version of the package in testing is out of sync
on the different arches: Then any arch might just upgrade to the version
of the source package; however, this can happen only if the package was
previously forced through, the arch is in outofsync_arches, or there was
no binary package of that arch present in unstable at all during the
testing migration.

In summary this means: The only influence that a package being in
testing has on a new version of the same package is that the new
version might go in easier.

5.14.2.5. Details

If you are interested in details, this is how britney works:

The packages are looked at to determine whether they are valid
candidates. This gives the update excuses. The most common reasons why a
package is not considered are too young, RC-bugginess, and out of date
on some arches. For this part of britney, the release managers have
hammers of various sizes, called hints (see below), to force britney to
consider a package.

Now, the more complex part happens: Britney tries to update testing
with the valid candidates. For that, britney tries to add each valid
candidate to the testing distribution. If the number of uninstallable
packages in testing doesn't increase, the package is accepted. From
that point on, the accepted package is considered to be part of
testing, such that all subsequent installability tests include this
package. Hints from the release team are processed before or after this
main run, depending on the exact type.

If you want to see more details, you can look it up on
https://release.debian.org/britney/update_output/.

The hints are available via
https://release.debian.org/britney/hints/, where you can find
the description [https://release.debian.org/doc/britney/hints.html]
as well. With the hints, the Debian Release team can block or unblock
packages, ease or force packages into testing, remove packages from
testing, approve uploads to Direct updates to testing or
override the urgency.

5.14.3. Direct updates to testing

The testing distribution is fed with packages from unstable
according to the rules explained above. However, in some cases, it is
necessary to upload packages built only for testing. For that, you
may want to upload to testing-proposed-updates.

Keep in mind that packages uploaded there are not automatically
processed; they have to go through the hands of the release manager. So
you'd better have a good reason to upload there. In order to know what a
good reason is in the release managers' eyes, you should read the
instructions that they regularly give on
debian-devel-announce@lists.debian.org.

You should not upload to testing-proposed-updates when you can
update your packages through unstable. If you can't (for example
because you have a newer development version in unstable), you may
use this facility. Even if a package is frozen, updates through
unstable are possible, if the upload via unstable does not
pull in any new dependencies.

Version numbers are usually selected by appending +debXuY,
where X is the major release number of Debian and Y is a counter
starting at 1. e.g. 1:2.4.3-4+deb13u1.

Please make sure you didn't miss any of these items in your upload:

	Make sure that your package really needs to go through
testing-proposed-updates, and can't go through unstable;

	Make sure that you included only the minimal amount of changes;

	Make sure that you included an appropriate explanation in the
changelog;

	Make sure that you've written the testing Release code names
(e.g. forky) into your target distribution;

	Make sure that you've built and tested your package in testing,
not in unstable;

	Make sure that your version number is higher than the version in
testing and testing-proposed-updates, and lower than in
unstable;

	Ask for authorization for uploading from the release managers.

	After uploading and successful build on all platforms, contact the
release team at debian-release@lists.debian.org and ask them to
approve your upload.

5.14.4. Frequently asked questions

5.14.4.1. What are release-critical bugs, and how do they get counted?

All bugs of some higher severities are by default considered
release-critical; currently, these are critical, grave and
serious bugs.

Such bugs are presumed to have an impact on the chances that the package
will be released with the stable release of Debian: in general, if a
package has open release-critical bugs filed on it, it won't get into
testing, and consequently won't be released in stable.

The unstable bug count comprises all release-critical bugs that are
marked to apply to package/version combinations available in
unstable for a release architecture. The testing bug count is
defined analogously.

5.14.4.2. How could installing a package into testing possibly break other packages?

The structure of the distribution archives is such that they can only
contain one version of a package; a package is defined by its name. So
when the source package acmefoo is installed into testing, along
with its binary packages acme-foo-bin, acme-bar-bin,
libacme-foo1 and libacme-foo-dev, the old version is removed.

However, the old version may have provided a binary package with an old
soname of a library, such as libacme-foo0. Removing the old
acmefoo will remove libacme-foo0, which will break any packages
that depend on it.

Evidently, this mainly affects packages that provide changing sets of
binary packages in different versions (in turn, mainly libraries).
However, it will also affect packages upon which versioned dependencies
have been declared of the ==, <=, or << varieties.

When the set of binary packages provided by a source package changes in
this way, all the packages that depended on the old binaries will have
to be updated to depend on the new binaries instead. Because installing
such a source package into testing breaks all the packages that
depended on it in testing, some care has to be taken now: all the
depending packages must be updated and ready to be installed themselves
so that they won't be broken, and, once everything is ready, manual
intervention by the release manager or an assistant is normally
required.

If you are having problems with complicated groups of packages like
this, contact debian-devel@lists.debian.org or
debian-release@lists.debian.org for help.

[1]
See the Debian Policy
Manual [https://www.debian.org/doc/debian-policy/] for guidelines
on what section a package belongs in.

[2]
In the past, such NMUs used the third-level number on the Debian part
of the revision to denote their recompilation-only status; however,
this syntax was ambiguous with native packages and did not allow
proper ordering of recompile-only NMUs, source NMUs, and security
NMUs on the same package, and has therefore been abandoned in favor
of this new syntax.

[3]
ITS is shorthand for "Intend to Salvage"

[4]
Though, if a package still is in the upload queue and hasn't
been moved to Incoming yet, it can be removed. (see
Uploading to ftp-master)

5.15. The Stable backports archive

5.15.1. Basics

Once a package reaches the testing distribution,
it is possible for anyone with upload rights in Debian (see below about
this) to build and upload a backport of that package to stable-backports,
to allow easy installation of the version from testing
onto a system that is tracking the stable distribution.

One should not upload a version of a package to stable-backports
until the matching version has already reached the testing archive.

5.15.2. Exception to the testing-first rule

The only exception to the above rule,
is when there's an important security fix that deserves a quick upload:
in such a case, there is no need to delay an upload
of the security fix to the stable-backports archive.
However, it is strongly advised
that the package is first fixed in unstable
before uploading a fix to the stable-backports archive.

5.15.3. Who can maintain packages in the stable-backports archive?

It is not necessarily up to the original package maintainer
to maintain the stable-backports version of the package.
Anyone can do it,
and one doesn't even need approval from the original maintainer to do so.
It is however good practice to first get in touch
with the original maintainer of the package
before attempting to start
the maintenance of a package in stable-backports.
The maintainer can, if they wish,
decide to maintain the backport themselves,
or help you doing so.
It is not uncommon, for example,
to apply a patch to the unstable version of a package,
to facilitate its backporting.

5.15.4. When can one start uploading to stable-backports?

The new stable-backports is created
before the freeze of the next stable suite.
However, it is not allowed to upload there
until the very end of the freeze cycle.
The stable-backports archive
is usually opened a few weeks before the final release
of the next stable suite,
but it doesn't make sense to upload
until the release has actually happened.

5.15.5. How long must a package be maintained when uploaded to stable-backports?

The stable-backports archive
is maintained for bugs and security issues
during the whole life-cycle of the Debian stable suite.
Therefore, an upload to stable-backports,
implies a willingness to maintain the backported package
for the duration of the stable suite,
which can be expected to be about 3 years
from its initial release.

The person uploading to backports
is also supposed to maintain the backported packages
for security during the lifetime of stable.

It is to be noted that the stable-backports isn't part of the LTS
or ELTS effort. The stable-backports FTP masters will close the
stable-backports repositories for uploads once stable reaches
end-of-life (ie: when stable becomes maintained by the LTS team only).
Therefore there won't be any maintenance of packages from stable-backports
after the official end of life of the stable suite, as uploads will
not be accepted.

5.15.6. How often shall one upload to stable-backports?

The packages in backports are supposed to follow
the developments that are happening in Testing.
Therefore, it is expected that any significant update in
testing should trigger an upload into stable-backports,
until the new stable is released. However,
please do not backport minor version changes without
user visible changes or bugfixes.

5.15.7. How can one learn more about backporting?

You can learn more about
how to contribute [https://backports.debian.org/Contribute/]
directly on the backport web site.

It is also recommended to read
the Frequently Asked Questions (FAQ) [https://backports.debian.org/FAQ/].

6. Best Packaging Practices

Debian's quality is largely due to the Debian
Policy [https://www.debian.org/doc/debian-policy/], which defines
explicit baseline requirements that all Debian packages must fulfill.
Yet there is also a shared history of experience which goes beyond the
Debian Policy, an accumulation of years of experience in packaging. Many
very talented people have created great tools, tools which help you, the
Debian maintainer, create and maintain excellent packages.

This chapter provides some best practices for Debian developers. All
recommendations are merely that, and are not requirements or policy.
These are just some subjective hints, advice and pointers collected from
Debian developers. Feel free to pick and choose whatever works best for
you.

6.1. Best practices for debian/rules

The following recommendations apply to the debian/rules file. Since
debian/rules controls the build process and selects the files that
go into the package (directly or indirectly), it's usually the file
maintainers spend the most time on.

6.1.1. Helper scripts

The rationale for using helper scripts in debian/rules is that they
let maintainers use and share common logic among many packages. Take for
instance the question of installing menu entries: you need to put the
file into /usr/share/menu (or /usr/lib/menu for executable
binary menufiles, if this is needed), and add commands to the maintainer
scripts to register and unregister the menu entries. Since this is a
very common thing for packages to do, why should each maintainer rewrite
all this on their own, sometimes with bugs? Also, supposing the menu
directory changed, every package would have to be changed.

Helper scripts take care of these issues. Assuming you comply with the
conventions expected by the helper script, the helper takes care of all
the details. Changes in policy can be made in the helper script; then
packages just need to be rebuilt with the new version of the helper and
no other changes.

Overview of Debian Maintainer Tools contains a couple of different helpers. The most common
and best (in our opinion) helper system is debhelper. Previous
helper systems, such as debmake, were monolithic: you couldn't pick
and choose which part of the helper you found useful, but had to use the
helper to do everything. debhelper, however, is a number of separate
little dh_* programs. For instance, dh_installman installs and
compresses man pages, dh_installmenu installs menu files, and so on.
Thus, it offers enough flexibility to be able to use the little helper
scripts, where useful, in conjunction with hand-crafted commands in
debian/rules.

You can get started with debhelper by reading debhelper 1, and
looking at the examples that come with the package. dh_make, from
the dh-make package (see dh-make), can be used to convert
a vanilla source package to a debhelperized package. This
shortcut, though, should not convince you that you do not need to bother
understanding the individual dh_* helpers. If you are going to use a
helper, you do need to take the time to learn to use that helper, to
learn its expectations and behavior.

6.1.2. Multiple binary packages

A single source package will often build several binary packages, either
to provide several flavors of the same software (e.g., the vim
source package) or to make several small packages instead of a big one
(e.g., so the user can install only the subset needed, and thus save
some disk space, see for example the libxml2 source package).

The second case can be easily managed in debian/rules. You just need
to move the appropriate files from the build directory into the
package's temporary trees. You can do this using install or
dh_install from debhelper. Be sure to check the different
permutations of the various packages, ensuring that you have the
inter-package dependencies set right in debian/control.

The first case is a bit more difficult since it involves multiple
recompiles of the same software but with different configuration
options. The vim source package is an example of how to manage this
using a hand-crafted debian/rules file.

6.2. Best practices for debian/control

The following practices are relevant to the debian/control file.
They supplement the Policy on package
descriptions [https://www.debian.org/doc/debian-policy/ch-binary.html#s-descriptions].

The description of the package, as defined by the corresponding field in
the control file, contains both the package synopsis and the long
description for the package. General guidelines for package descriptions describes common guidelines for both
parts of the package description. Following that, The package synopsis, or short description provides guidelines specific
to the synopsis, and The long description contains
guidelines specific to the description.

6.2.1. General guidelines for package descriptions

The package description should be written for the average likely user,
the average person who will use and benefit from the package. For
instance, development packages are for developers, and can be technical
in their language. More general-purpose applications, such as editors,
should be written for a less technical user.

Our review of package descriptions lead us to conclude that most package
descriptions are technical, that is, are not written to make sense for
non-technical users. Unless your package really is only for technical
users, this is a problem.

How do you write for non-technical users? Avoid jargon. Avoid referring
to other applications or frameworks that the user might not be familiar
with — GNOME or KDE is fine, since users are probably familiar with
these terms, but GTK is probably not. Try not to assume any knowledge at
all. If you must use technical terms, introduce them.

Be objective. Package descriptions are not the place for advocating your
package, no matter how much you love it. Remember that the reader may
not care about the same things you care about.

References to the names of any other software packages, protocol names,
standards, or specifications should use their canonical forms, if one
exists. For example, use X Window System, X11, or X; not X Windows,
X-Windows, or X Window. Use GTK, not GTK+ or gtk. Use GNOME, not Gnome.
Use PostScript, not Postscript or postscript.

If you are having problems writing your description, you may wish to
send it along to debian-l10n-english@lists.debian.org and request
feedback.

6.2.2. The package synopsis, or short description

Policy says the synopsis line (the short description) must be concise,
not repeating the package name, but also informative.

The synopsis functions as a phrase describing the package, not a
complete sentence, so sentential punctuation is inappropriate: it does
not need extra capital letters or a final period (full stop). It should
also omit any initial indefinite or definite article — "a", "an", or
"the". Thus for instance:

Package: libeg0
Description: exemplification support library

Technically this is a noun phrase minus articles, as opposed to a verb
phrase. A good heuristic is that it should be possible to substitute the
package name and synopsis into this formula:

The package name provides {a,an,the,some} synopsis.

Sets of related packages may use an alternative scheme that divides the
synopsis into two parts, the first a description of the whole suite and
the second a summary of the package's role within it:

Package: eg-tools
Description: simple exemplification system (utilities)

Package: eg-doc
Description: simple exemplification system - documentation

These synopses follow a modified formula. Where a package "name" has a
synopsis "suite (role)" or "suite - role", the elements should
be phrased so that they fit into the formula:

The package name provides {a,an,the} role for the suite.

6.2.3. The long description

The long description is the primary information available to the user
about a package before they install it. It should provide all the
information needed to let the user decide whether to install the
package. Assume that the user has already read the package synopsis.

The long description should consist of full and complete sentences.

The first paragraph of the long description should answer the following
questions: what does the package do? what task does it help the user
accomplish? It is important to describe this in a non-technical way,
unless of course the audience for the package is necessarily technical.

Long descriptions of related packages,
for example built from the same source,
can share paragraphs in order to increase consistency
and reduce the workload for translators,
but you need at least one separate paragraph describing
the package's specific role.

The following paragraphs should answer the following questions: Why do I
as a user need this package? What other features does the package have?
What outstanding features and deficiencies are there compared to other
packages (e.g., if you need X, use Y instead)? Is this package related
to other packages in some way that is not handled by the package manager
(e.g., is this the client for the foo server)?

Be careful to avoid spelling and grammar mistakes. Ensure that you
spell-check it. Both ispell and aspell have special modes for
checking debian/control files:

ispell -d american -g debian/control

aspell -d en -D -c debian/control

Users usually expect these questions to be answered in the package
description:

	What does the package do? If it is an add-on to another package, then
the short description of the package we are an add-on to should be
put in here.

	Why should I want this package? This is related to the above, but not
the same (this is a mail user agent; this is cool, fast, interfaces
with PGP and LDAP and IMAP, has features X, Y, and Z).

	If this package should not be installed directly, but is pulled in by
another package, this should be mentioned.

	If the package is experimental, or there are other reasons it
should not be used, if there are other packages that should be used
instead, it should be here as well.

	How is this package different from the competition? Is it a better
implementation? more features? different features? Why should I
choose this package?

6.2.4. Upstream home page

We recommend that you add the URL for the package's home page in the
Homepage field of the Source section in debian/control.
Adding this information in the package description itself is considered
deprecated.

6.2.5. Version Control System location

There are additional fields for the location of the Version Control
System in debian/control.

6.2.5.1. Vcs-Browser

Value of this field should be a https:// URL pointing to a
web-browsable copy of the Version Control System repository used to
maintain the given package, if available.

The information is meant to be useful for the final user, willing to
browse the latest work done on the package (e.g. when looking for the
patch fixing a bug tagged as pending in the bug tracking system).

6.2.5.2. Vcs-*

Value of this field should be a string identifying unequivocally the
location of the Version Control System repository used to maintain the
given package, if available. * identifies the Version Control
System; currently the following systems are supported by the package
tracking system: arch, bzr (Bazaar), cvs, darcs,
git, hg (Mercurial), mtn (Monotone), svn (Subversion).

The information is meant to be useful for a user knowledgeable in the
given Version Control System and willing to build the current version of
a package from the VCS sources. Other uses of this information might
include automatic building of the latest VCS version of the given
package. To this end the location pointed to by the field should better
be version agnostic and point to the main branch (for VCSs supporting
such a concept). Also, the location pointed to should be accessible to
the final user; fulfilling this requirement might imply pointing to an
anonymous access of the repository instead of pointing to an
SSH-accessible version of the same.

In the following example, an instance of the field for a Git
repository of the vim package is shown. Note how the URL is in the
https:// scheme (instead of ssh://). The use of the
Vcs-Browser and Homepage fields described above is also shown.

Source: vim
<snip>
Vcs-Git: https://salsa.debian.org/vim-team/vim.git
Vcs-Browser: https://salsa.debian.org/vim-team/vim
Homepage: https://www.vim.org

Maintaining the packaging in a version control system, and setting
a Vcs-* header is good practice and makes it easier for
others to contribute changes.

Almost all packages in Debian that use a version control
system use Git; if you create a new package, using Git is a good
idea simply because it's the system that contributors will
be familiar with.

DEP-14 [https://dep-team.pages.debian.net/deps/dep14/] defines
a common layout for Debian packages.

6.3. Best practices for debian/changelog

The following practices supplement the Policy on changelog
files [https://www.debian.org/doc/debian-policy/ch-docs.html#s-changelogs].

6.3.1. Writing useful changelog entries

The changelog entry for a package revision documents changes in that
revision, and only them. Concentrate on describing significant and
user-visible changes that were made since the last version.

Focus on what was changed — who, how and when are usually less
important. Having said that, remember to politely attribute people who
have provided notable help in making the package (e.g., those who have
sent in patches).

There's no need to elaborate the trivial and obvious changes. You can
also aggregate several changes in one entry. On the other hand, don't be
overly terse if you have undertaken a major change. Be especially clear
if there are changes that affect the behaviour of the program. For
further explanations, use the README.Debian file.

Use common English so that the majority of readers can comprehend it.
Avoid abbreviations, tech-speak and jargon when explaining changes that
close bugs, especially for bugs filed by users that did not strike you
as particularly technically savvy. Be polite, don't swear.

It is sometimes desirable to prefix changelog entries with the names of
the files that were changed. However, there's no need to explicitly list
each and every last one of the changed files, especially if the change
was small or repetitive. You may use wildcards.

When referring to bugs, don't assume anything. Say what the problem was,
how it was fixed, and append the closes: #nnnnn string. See
When bugs are closed by new uploads for more information.

6.3.2. Selecting the upload urgency

The release team have indicated that they expect most uploads to
unstable to use urgency=medium. That is, you should choose
urgency=medium unless there is some particular reason for the
upload to migrate to testing more quickly or slowly (see also
Updates from unstable). For example, you might select
urgency=low if the changes since the last upload are large and
might be disruptive in unanticipated ways.

The delays are currently 2, 5 or 10 days, depending on the urgency
(high, medium or low). The actual numbers are actually controled by
the britney configuration [https://release.debian.org/britney/britney.conf] which also
includes accelerated migrations when Autopkgtest passes.

6.3.3. Common misconceptions about changelog entries

The changelog entries should not document generic packaging issues
(Hey, if you're looking for foo.conf, it's in /etc/blah/.), since
administrators and users are supposed to be at least remotely acquainted
with how such things are generally arranged on Debian systems. Do,
however, mention if you change the location of a configuration file.

The only bugs closed with a changelog entry should be those that are
actually fixed in the same package revision. Closing unrelated bugs in
the changelog is bad practice. See When bugs are closed by new uploads.

The changelog entries should not be used for random discussion with
bug reporters (I don't see segfaults when starting foo with option bar;
send in more info), general statements on life, the universe and
everything (sorry this upload took me so long, but I caught the flu), or
pleas for help (the bug list on this package is huge, please lend me a
hand). Such things usually won't be noticed by their target audience,
but may annoy people who wish to read information about actual changes
in the package. See Responding to bugs for more information on how
to use the bug tracking system.

It is an old tradition to acknowledge bugs fixed in non-maintainer
uploads in the first changelog entry of the proper maintainer upload. As
we have version tracking now, it is enough to keep the NMUed changelog
entries and just mention this fact in your own changelog entry.

6.3.4. Common errors in changelog entries

The following examples demonstrate some common errors or examples of bad
style in changelog entries.

* Fixed all outstanding bugs.

This doesn't tell readers anything too useful, obviously.

* Applied patch from Jane Random.

What was the patch about?

* Late night install target overhaul.

Overhaul which accomplished what? Is the mention of late night supposed
to remind us that we shouldn't trust that code?

* Fix vsync fw glitch w/ ancient CRTs.

Too many acronyms (what does "fw" mean, "firmware"?), and it's not
overly clear what the glitch was actually about, or how it was fixed.

* This is not a bug, closes: #nnnnnn.

First of all, there's absolutely no need to upload the package to convey
this information; instead, use the bug tracking system. Secondly,
there's no explanation as to why the report is not a bug.

* Has been fixed for ages, but I forgot to close; closes: #54321.

If for some reason you didn't mention the bug number in a previous
changelog entry, there's no problem, just close the bug normally in the
BTS. There's no need to touch the changelog file, presuming the
description of the fix is already in (this applies to the fixes by the
upstream authors/maintainers as well; you don't have to track bugs that
they fixed ages ago in your changelog).

* Closes: #12345, #12346, #15432

Where's the description? If you can't think of a descriptive message,
start by inserting the title of each different bug.

6.3.5. Supplementing changelogs with NEWS.Debian files

Important news about changes in a package can also be put in
NEWS.Debian files. The news will be displayed by tools like
apt-listchanges, before all the rest of the changelogs. This is the
preferred means to let the user know about significant changes in a
package. It is better than using debconf notes since it is less
annoying and the user can go back and refer to the NEWS.Debian file
after the install. And it's better than listing major changes in
README.Debian, since the user can easily miss such notes.

The file format is the same as a debian changelog file, but leave off
the asterisks and describe each news item with a full paragraph when
necessary rather than the more concise summaries that would go in a
changelog. It's a good idea to run your file through
dpkg-parsechangelog to check its formatting as it will not be
automatically checked during build as the changelog is. Here is an
example of a real NEWS.Debian file:

cron (3.0pl1-74) unstable; urgency=low

 The checksecurity script is no longer included with the cron package:
 it now has its own package, checksecurity. If you liked the
 functionality provided with that script, please install the new
 package.

 -- Steve Greenland <stevegr@debian.org> Sat, 6 Sep 2003 17:15:03 -0500

The NEWS.Debian file is installed as
/usr/share/doc/package/NEWS.Debian.gz. It is compressed,
and always has that name even in Debian native packages. If you use
debhelper, dh_installchangelogs will install debian/NEWS
files for you.

Unlike changelog files, you need not update NEWS.Debian files with
every release. Only update them if you have something particularly
newsworthy that user should know about. If you have no news at all,
there's no need to ship a NEWS.Debian file in your package. No news
is good news!

6.4. Best practices around security

A set of suggestions and links to other reference documents around
security aspects for packaging can be found at the Developer's Best
Practices for OS Security chapter inside the Securing Debian Manual [https://www.debian.org/doc/manuals/securing-debian-manual/ch09.en.html].

6.5. Best practices for maintainer scripts

Maintainer scripts include the files debian/postinst,
debian/preinst, debian/prerm and debian/postrm. These
scripts take care of any package installation or deinstallation setup
that isn't handled merely by the creation or removal of files and
directories. The following instructions supplement the Debian
Policy [https://www.debian.org/doc/debian-policy/].

Maintainer scripts must be idempotent. That means that you need to make
sure nothing bad will happen if the script is called twice where it
would usually be called once.

Standard input and output may be redirected (e.g. into pipes) for
logging purposes, so don't rely on them being a tty.

All prompting or interactive configuration should be kept to a minimum.
When it is necessary, you should use the debconf package for the
interface. Remember that prompting in any case can only be in the
configure stage of the postinst script.

Keep the maintainer scripts as simple as possible. We suggest you use
pure POSIX shell scripts. Remember, if you do need any bash features,
the maintainer script must have a bash shebang line. POSIX shell or Bash
are preferred to Perl, since they enable debhelper to easily add
bits to the scripts.

If you change your maintainer scripts, be sure to test package removal,
double installation, and purging. Be sure that a purged package is
completely gone, that is, it must remove any files created, directly or
indirectly, in any maintainer script.

If you need to check for the existence of a command, you should use
something like

if command -v install-docs > /dev/null; then ...

You can use this function to search $PATH for a command name, passed
as an argument. It returns true (zero) if the command was found, and
false if not. This is really the best way, since command -v is a
shell-builtin for many shells and is defined in POSIX.

Using which is an acceptable alternative, since it is from the required
debianutils package.

6.6. Configuration management with debconf

Debconf is a configuration management system that can be used by all
the various packaging scripts (postinst mainly) to request feedback
from the user concerning how to configure the package. Direct user
interactions must now be avoided in favor of debconf interaction.
This will enable non-interactive installations in the future.

Debconf is a great tool but it is often poorly used. Many common
mistakes are listed in the debconf-devel 7 man page. It is something
that you must read if you decide to use debconf. Also, we document some
best practices here.

These guidelines include some writing style and typography
recommendations, general considerations about debconf usage as well as
more specific recommendations for some parts of the distribution (the
installation system for instance).

6.6.1. Do not abuse debconf

Since debconf appeared in Debian, it has been widely abused and several
criticisms received by the Debian distribution come from debconf abuse
with the need of answering a wide bunch of questions before getting any
little thing installed.

Keep usage notes to where they belong: the NEWS.Debian, or
README.Debian file. Only use notes for important notes that may
directly affect the package usability. Remember that notes will always
block the install until confirmed or bother the user by email.

Carefully choose the questions' priorities in maintainer scripts. See
debconf-devel 7 for details about priorities. Most questions should use
medium and low priorities.

6.6.2. General recommendations for authors and translators

6.6.2.1. Write correct English

Most Debian package maintainers are not native English speakers. So,
writing properly phrased templates may not be easy for them.

Please use (and abuse) debian-l10n-english@lists.debian.org mailing
list. Have your templates proofread.

Badly written templates give a poor image of your package, of your
work... or even of Debian itself.

Avoid technical jargon as much as possible. If some terms sound common
to you, they may be impossible to understand for others. If you cannot
avoid them, try to explain them (use the extended description). When
doing so, try to balance between verbosity and simplicity.

6.6.2.2. Be kind to translators

Debconf templates may be translated. Debconf, along with its sister
package po-debconf, offers a simple framework for getting templates
translated by translation teams or even individuals.

Please use gettext-based templates. Install po-debconf on your
development system and read its documentation (man po-debconf is a
good start).

Avoid changing templates too often. Changing template text induces more
work for translators, which will get their translation fuzzied. A fuzzy
translation is a string for which the original changed since it was
translated, therefore requiring some update by a translator to be
usable. When changes are small enough, the original translation is kept
in PO files but marked as fuzzy.

If you plan to do changes to your original templates, please use the
notification system provided with the po-debconf package, namely the
podebconf-report-po, to contact translators. Most active translators
are very responsive and getting their work included along with your
modified templates will save you additional uploads. If you use
gettext-based templates, the translator's name and e-mail addresses are
mentioned in the PO files headers and will be used by
podebconf-report-po.

A recommended use of that utility is:

cd debian/po && podebconf-report-po --call --languageteam --withtranslators --deadline="+10 days"

This command will first synchronize the PO and POT files in
debian/po with the template files listed in
debian/po/POTFILES.in. Then, it will send a call for new
translations, in the debian-i18n@lists.debian.org mailing list.
Finally, it will also send a call for translation updates to the
language team (mentioned in the Language-Team field of each PO file)
as well as the last translator (mentioned in Last-translator).

Giving a deadline to translators is always appreciated, so that they can
organize their work. Please remember that some translation teams have a
formalized translate/review process and a delay lower than 10 days is
considered as unreasonable. A shorter delay puts too much pressure on
translation teams and should be kept for very minor changes.

If in doubt, you may also contact the translation team for a given
language (debian-l10n-xxxxx@lists.debian.org), or the
debian-i18n@lists.debian.org mailing list.

6.6.2.3. Unfuzzy complete translations when correcting typos and spelling

When the text of a debconf template is corrected and you are sure
that the change does not affect translations, please be kind to
translators and unfuzzy their translations.

If you don't do so, the whole template will not be translated as long as
a translator will send you an update.

To unfuzzy translations, you can use msguntypot (part of the
po4a package).

	Regenerate the POT and PO files.

debconf-updatepo

	Make a copy of the POT file.

cp templates.pot templates.pot.orig

	Make a copy of all the PO files.

mkdir po_fridge; cp *.po po_fridge

	Change the debconf template files to fix the typos.

	Regenerate the POT and PO files (again).

debconf-updatepo

At this point, the typo fix fuzzied all the translations, and this
unfortunate change is the only one between the PO files of your main
directory and the one from the fridge. Here is how to solve this.

	Discard fuzzy translation, restore the ones from the fridge.

cp po_fridge/*.po .

	Manually merge the PO files with the new POT file, but taking the
useless fuzzy into account.

msguntypot -o templates.pot.orig -n templates.pot *.po

	Clean up.

rm -rf templates.pot.orig po_fridge

6.6.2.4. Do not make assumptions about interfaces

Templates text should not make reference to widgets belonging to some
debconf interfaces. Sentences like If you answer Yes... have no
meaning for users of graphical interfaces that use checkboxes for
boolean questions.

String templates should also avoid mentioning the default values in
their description. First, because this is redundant with the values seen
by the users. Also, because these default values may be different from
the maintainer choices (for instance, when the debconf database was
preseeded).

More generally speaking, try to avoid referring to user actions. Just
give facts.

6.6.2.5. Do not use first person

You should avoid the use of first person (I will do this... or We
recommend...). The computer is not a person and the Debconf templates
do not speak for the Debian developers. You should use neutral
construction. Those of you who already wrote scientific publications,
just write your templates like you would write a scientific paper.
However, try using the active voice if still possible, like Enable this
if ... instead of This can be enabled if....

6.6.2.6. Be gender neutral

As a way of showing our commitment to our diversity
statement [https://www.debian.org/intro/diversity], please use
gender-neutral constructions in your writing. This means avoiding
pronouns like he/she when referring to a role (like "maintainer") whose
gender is unknown. Instead, you should use the plural form (singular
they [https://en.wikipedia.org/wiki/Singular_they]).

6.6.3. Templates fields definition

This part gives some information which is mostly taken from the
debconf-devel 7 manual page.

6.6.3.1. Type

6.6.3.1.1. string

Results in a free-form input field that the user can type any string
into.

6.6.3.1.2. password

Prompts the user for a password. Use this with caution; be aware that
the password the user enters will be written to debconf's database. You
should probably clean that value out of the database as soon as is
possible.

6.6.3.1.3. boolean

A true/false choice. Remember: true/false, not yes/no...

6.6.3.1.4. select

A choice between one of a number of values. The choices must be
specified in a field named 'Choices'. Separate the possible values with
commas and spaces, like this: Choices: yes, no, maybe.

If choices are translatable strings, the 'Choices' field may be marked
as translatable by using __Choices. The double underscore will split
out each choice in a separate string.

The po-debconf system also offers interesting possibilities to only
mark some choices as translatable. Example:

Template: foo/bar
Type: Select
#flag:translate:3
__Choices: PAL, SECAM, Other
_Description: TV standard:
 Please choose the TV standard used in your country.

In that example, only the 'Other' string is translatable while others
are acronyms that should not be translated. The above allows only
'Other' to be included in PO and POT files.

The debconf templates flag system offers many such possibilities. The
po-debconf 7 manual page lists all these possibilities.

6.6.3.1.5. multiselect

Like the select data type, except the user can choose any number of
items from the choices list (or chose none of them).

6.6.3.1.6. note

Rather than being a question per se, this datatype indicates a note that
can be displayed to the user. It should be used only for important notes
that the user really should see, since debconf will go to great pains to
make sure the user sees it; halting the install for them to press a key,
and even mailing the note to them in some cases.

6.6.3.1.7. text

This type is now considered obsolete: don't use it.

6.6.3.1.8. error

This type is designed to handle error messages. It is mostly similar to
the note type. Front ends may present it differently (for instance, the
dialog front end of cdebconf draws a red screen instead of the usual
blue one).

It is recommended to use this type for any message that needs user
attention for a correction of any kind.

6.6.3.2. Description: short and extended description

Template descriptions have two parts: short and extended. The short
description is in the Description: line of the template.

The short description should be kept short (50 characters or so) so that
it may be accommodated by most debconf interfaces. Keeping it short also
helps translators, as usually translations tend to end up being longer
than the original.

The short description should be able to stand on its own. Some
interfaces do not show the long description by default, or only if the
user explicitly asks for it or even do not show it at all. Avoid things
like: "What do you want to do?"

The short description does not necessarily have to be a full sentence.
This is part of the keep it short and efficient recommendation.

The extended description should not repeat the short description word
for word. If you can't think up a long description, then first, think
some more. Post to debian-devel. Ask for help. Take a writing class!
That extended description is important. If after all that you still
can't come up with anything, leave it blank.

The extended description should use complete sentences. Paragraphs
should be kept short for improved readability. Do not mix two ideas in
the same paragraph but rather use another paragraph.

Don't be too verbose. User tend to ignore too long screens. 20 lines are
by experience a border you shouldn't cross, because that means that in
the classical dialog interface, people will need to scroll, and lot of
people just don't do that.

The extended description should never include a question.

For specific rules depending on templates type (string, boolean, etc.),
please read below.

6.6.3.3. Choices

This field should be used for select and multiselect types. It contains
the possible choices that will be presented to users. These choices
should be separated by commas.

6.6.3.4. Default

This field is optional. It contains the default answer for string,
select and multiselect templates. For multiselect templates, it may
contain a comma-separated list of choices.

6.6.4. Template fields specific style guide

6.6.4.1. Type field

No specific indication except: use the appropriate type by referring to
the previous section.

6.6.4.2. Description field

Below are specific instructions for properly writing the Description
(short and extended) depending on the template type.

6.6.4.2.1. String/password templates

	The short description is a prompt and not a title. Avoid question
style prompts (IP Address?) in favour of opened prompts (IP
address:). The use of colons is recommended.

	The extended description is a complement to the short description. In
the extended part, explain what is being asked, rather than ask the
same question again using longer words. Use complete sentences. Terse
writing style is strongly discouraged.

6.6.4.2.2. Boolean templates

	The short description should be phrased in the form of a question,
which should be kept short and should generally end with a question
mark. Terse writing style is permitted and even encouraged if the
question is rather long (remember that translations are often longer
than original versions).

	Again, please avoid referring to specific interface widgets. A common
mistake for such templates is if you answer Yes-type constructions.

6.6.4.2.3. Select/Multiselect

	The short description is a prompt and not a title. Do not use
useless "Please choose..." constructions. Users are clever enough to
figure out they have to choose something... :)

	The extended description will complete the short description. It may
refer to the available choices. It may also mention that the user may
choose more than one of the available choices, if the template is a
multiselect one (although the interface often makes this clear).

6.6.4.2.4. Notes

	The short description should be considered to be a title.

	The extended description is what will be displayed as a more detailed
explanation of the note. Phrases, no terse writing style.

	Do not abuse debconf. Notes are the most common way to abuse
debconf. As written in the debconf-devel manual page: it's best to
use them only for warning about very serious problems. The
NEWS.Debian or README.Debian files are the appropriate
location for a lot of notes. If, by reading this, you consider
converting your Note type templates to entries in NEWS.Debian or
README.Debian, please consider keeping existing translations for
the future.

6.6.4.3. Choices field

If the Choices are likely to change often, please consider using the
__Choices trick. This will split each individual choice into a single
string, which will considerably help translators for doing their work.

6.6.4.4. Default field

If the default value for a select template is likely to vary depending
on the user language (for instance, if the choice is a language choice),
please use the _Default trick, documented in po-debconf 7.

This special field allows translators to put the most appropriate choice
according to their own language. It will become the default choice when
their language is used while your own mentioned Default Choice will be
used when using English.

Do not use an empty default field. If you don't want to use default
values, do not use Default at all.

If you use po-debconf (and you should; see Be kind to translators), consider making this field translatable, if
you think it may be translated.

Example, taken from the geneweb package templates:

Template: geneweb/lang
Type: select
__Choices: Afrikaans (af), Bulgarian (bg), Catalan (ca), Chinese (zh), Czech (cs), Danish (da), Dutch (nl), English (en), Esperanto (eo), Estonian (et), Finnish (fi), French (fr), German (de), Hebrew (he), Icelandic (is), Italian (it), Latvian (lv), Norwegian (no), Polish (pl), Portuguese (pt), Romanian (ro), Russian (ru), Spanish (es), Swedish (sv)
This is the default choice. Translators may put their own language here
instead of the default.
WARNING : you MUST use the ENGLISH NAME of your language
For instance, the French translator will need to put French (fr) here.
_Default: English[translators, please see comment in PO files]
_Description: Geneweb default language:

Note the use of brackets, which allow internal comments in debconf
fields. Also note the use of comments, which will show up in files the
translators will work with.

The comments are needed as the _Default trick is a bit confusing: the
translators may put in their own choice.

6.7. Internationalization

This section contains global information for developers to make
translators' lives easier. More information for translators and
developers interested in internationalization are available in the
Internationalisation and localisation in
Debian [https://people.debian.org/~jfs/debconf6/html/] documentation.

6.7.1. Handling debconf translations

Like porters, translators have a difficult task. They work on many
packages and must collaborate with many different maintainers. Moreover,
most of the time, they are not native English speakers, so you may need
to be particularly patient with them.

The goal of debconf was to make package configuration easier for
maintainers and for users. Originally, translation of debconf templates
was handled with debconf-mergetemplate. However, that technique is
now deprecated; the best way to accomplish debconf
internationalization is by using the po-debconf package. This method
is easier both for maintainer and translators; transition scripts are
provided.

Using po-debconf, the translation is stored in .po files
(drawing from gettext translation techniques). Special template
files contain the original messages and mark which fields are
translatable. When you change the value of a translatable field, by
calling debconf-updatepo, the translation is marked as needing
attention from the translators. Then, at build time, the
dh_installdebconf program takes care of all the needed magic to add
the template along with the up-to-date translations into the binary
packages. Refer to the po-debconf 7 manual page for details.

6.7.2. Internationalized documentation

Internationalizing documentation is crucial for users, but a lot of
labor. There's no way to eliminate all that work, but you can make
things easier for translators.

If you maintain documentation of any size, it is easier for translators
if they have access to a source control system. That lets translators
see the differences between two versions of the documentation, so, for
instance, they can see what needs to be retranslated. It is recommended
that the translated documentation maintain a note about what source
control revision the translation is based on. An interesting system is
provided by
doc-check [https://salsa.debian.org/installer-team/installation-guide/blob/master/scripts/doc-check]
in the debian-installer package, which shows an overview of the
translation status for any given language, using structured comments for
the current revision of the file to be translated and, for a translated
file, the revision of the original file the translation is based on. You
might wish to adapt and provide that in your VCS area.

If you maintain XML or SGML documentation, we suggest that you isolate
any language-independent information and define those as entities in a
separate file that is included by all the different translations. This
makes it much easier, for instance, to keep URLs up to date across
multiple files.

Some tools (e.g. po4a, poxml, or the translate-toolkit) are
specialized in extracting the translatable material from different
formats. They produce PO files, a format quite common to translators,
which permits seeing what needs to be re-translated when the translated
document is updated.

6.8. Best practices for debian/patches

Debian packages might suffer from bugs in the upstream code that you need to
deal with. In the source format “3.0 (quilt)” patches are stored in
debian/patches/ and automatically applied as listed in
debian/patches/series when the source package is unpacked.

Patches should be documented following DEP-3 [https://dep-team.pages.debian.net/deps/dep3/].

Several tools exist to automate managing the patches. If you manage a source
package outside of any Git repository, then your best option is likely quilt.
Otherwise, you should consider to rely on Git's built-in features or on
on the git packaging helper that you use (if any). In particular, for packages
using git-buildpackage, you should use the gbp pq commands to manage
the contents of the debian/patches/ directory.

A single patch can be created with e.g. git format-patch -1 d33286c from a
single commit. Avoid using git show as it lacks the full headers.

If the upstream fix is spread across multiple commits but makes sense to apply
(and drop) in Debian as a single patch, one could use a command such as git
format-patch --stdout abc123..def456 > debian/patches/... and append the
Bug field only in the commit message of the first commit in the patch.

If one appends .patch to the url of a GitHub commit or Pull Request or GitLab
commit or Merge Request, the resulting patch file is using this same format
(as if it were generated by git format-patch).

Remember to always append a Bug header to the patch description so that a
reader can follow the link to see where the bug was reported or patch submitted.
If the purpose of the patch is to specifically divert from upstream permanently,
append the header Forwarded: not-needed to the end of the description.

6.9. Common packaging situations

6.9.1. Packages using autoconf/automake

Keeping autoconf's config.sub and config.guess files up to
date is critical for porters, especially on more volatile architectures.
Some very good packaging practices for any package using autoconf
and/or automake have been synthesized in
/usr/share/doc/autotools-dev/README.Debian.gz from the
autotools-dev package. You're strongly encouraged to read this file
and to follow the given recommendations.

6.9.2. Libraries

Libraries are always difficult to package for various reasons. The
policy imposes many constraints to ease their maintenance and to make
sure upgrades are as simple as possible when a new upstream version
comes out. Breakage in a library can result in dozens of dependent
packages breaking.

Good practices for library packaging have been grouped in the library
packaging guide [https://www.netfort.gr.jp/~dancer/column/libpkg-guide/libpkg-guide.html].

6.9.3. Documentation

Be sure to follow the Policy on
documentation [https://www.debian.org/doc/debian-policy/ch-docs.html].

If your package contains documentation built from XML or SGML, we
recommend you not ship the XML or SGML source in the binary package(s).
If users want the source of the documentation, they should retrieve the
source package.

Policy specifies that documentation should be shipped in HTML format. We
also recommend shipping documentation in PDF and plain text format if
convenient and if output of reasonable quality is possible. However, it
is generally not appropriate to ship plain text versions of
documentation whose source format is HTML.

Major shipped manuals should register themselves with doc-base on
installation. See the doc-base package documentation for more
information.

Debian policy (section 12.1) directs that manual pages should accompany
every program, utility, and function, and suggests them for other
objects like configuration files. If the work you are packaging does not
have such manual pages, consider writing them for inclusion in your
package, and submitting them upstream.

The manpages do not need to be written directly in the troff format.
Popular source formats are DocBook, POD and reST, which can be converted
using xsltproc, pod2man and rst2man respectively. To a
lesser extent, the help2man program can also be used to write a
stub.

6.9.4. Specific types of packages

Several specific types of packages have special sub-policies and
corresponding packaging rules and practices:

	Perl related packages have a Perl
policy [https://www.debian.org/doc/packaging-manuals/perl-policy/];
some examples of packages following that policy are
libdbd-pg-perl (binary perl module) or libmldbm-perl (arch
independent perl module).

	Python related packages have their Python policy; see
/usr/share/doc/python/python-policy.txt.gz in the python
package.

	Emacs related packages have the emacs
policy [https://www.debian.org/doc/packaging-manuals/debian-emacs-policy].

	Java related packages have their java
policy [https://www.debian.org/doc/packaging-manuals/java-policy/].

	OCaml related packages have their own policy, found in
/usr/share/doc/ocaml/ocaml_packaging_policy.gz from the ocaml
package. A good example is the camlzip source package.

	Packages providing XML or SGML DTDs should conform to the
recommendations found in the sgml-base-doc package.

	Lisp packages should register themselves with
common-lisp-controller, about which see
/usr/share/doc/common-lisp-controller/README.packaging.

	Rust packaging is described in the Debian Rust Team Book [https://rust-team.pages.debian.net/book/];.

6.9.5. Architecture-independent data

It is not uncommon to have a large amount of architecture-independent
data packaged with a program. For example, audio files, a collection of
icons, wallpaper patterns, or other graphic files. If the size of this
data is negligible compared to the size of the rest of the package, it's
probably best to keep it all in a single package.

However, if the size of the data is considerable, consider splitting it
out into a separate, architecture-independent package (_all.deb). By
doing this, you avoid needless duplication of the same data into ten or
more .debs, one per each architecture. While this adds some extra
overhead into the Packages files, it saves a lot of disk space on
Debian mirrors. Separating out architecture-independent data also
reduces processing time of lintian (see Package lint tools) when
run over the entire Debian archive.

6.9.6. Needing a certain locale during build

If you need a certain locale during build, you can create a temporary
file via this trick:

If you set LOCPATH to the equivalent of /usr/lib/locale, and
LC_ALL to the name of the locale you generate, you should get what
you want without being root. Something like this:

LOCALE_PATH=debian/tmpdir/usr/lib/locale
LOCALE_NAME=en_IN
LOCALE_CHARSET=UTF-8

mkdir -p $LOCALE_PATH
localedef -i $LOCALE_NAME.$LOCALE_CHARSET -f $LOCALE_CHARSET $LOCALE_PATH/$LOCALE_NAME.$LOCALE_CHARSET

Using the locale
LOCPATH=$LOCALE_PATH LC_ALL=$LOCALE_NAME.$LOCALE_CHARSET date

6.9.7. Make transition packages deborphan compliant

Deborphan is a program for helping users to detect which packages can
safely be removed from the system, i.e. the ones that have no packages
depending on them. The default operation is to search only within the
libs and oldlibs sections, to hunt down unused libraries. But when
passed the right argument, it tries to catch other useless packages.

For example, with --guess-dummy, deborphan tries to search all
transitional packages which were needed for upgrade but which can now
be removed. For that, it currently looks for the string dummy or transitional
in their short description, though it would be better to search for both
strings, as there are some dummy or transitional packages, which have other
purposes.

So, when you are creating such a package, please make sure to add
transitional dummy package to the short description to make this explicit.
If you are looking for examples, just run: apt-cache search .|grep dummy
or apt-cache search .|grep transitional.

Also, it is recommended to adjust its section to oldlibs and its
priority to optional in order to ease deborphan's job.

6.9.8. Best practices for .orig.tar.{gz,bz2,xz} files

There are two kinds of original source tarballs: Pristine source and
repackaged upstream source.

6.9.8.1. Pristine source

The defining characteristic of a pristine source tarball is that the
.orig.tar.{gz,bz2,xz} file is byte-for-byte identical to a tarball
officially distributed by the upstream author. [1] This makes it
possible to use checksums to easily verify that all changes between
Debian's version and upstream's are contained in the Debian diff. Also,
if the original source is huge, upstream authors and others who already
have the upstream tarball can save download time if they want to inspect
your packaging in detail.

There are no universally accepted guidelines that upstream authors
follow regarding the directory structure inside their tarball, but
dpkg-source is nevertheless able to deal with most upstream tarballs
as pristine source. Its strategy is equivalent to the following:

	It unpacks the tarball in an empty temporary directory by doing

zcat path/to/packagename_upstream-version.orig.tar.gz | tar xf -

	If, after this, the temporary directory contains nothing but one
directory and no other files, dpkg-source renames that directory
to packagename-upstream-version(.orig). The name of
the top-level directory in the tarball does not matter, and is
forgotten.

	Otherwise, the upstream tarball must have been packaged without a
common top-level directory (shame on the upstream author!). In this
case, dpkg-source renames the temporary directory itself to
packagename-upstream-version(.orig).

6.9.8.2. Repackaged upstream source

You should upload packages with a pristine source tarball if
possible, but there are various reasons why it might not be possible.
This is the case if upstream does not distribute the source as gzipped
tar at all, or if upstream's tarball contains non-DFSG-free material
that you must remove before uploading.

In these cases the developer must construct a suitable
.orig.tar.{gz,bz2,xz} file themselves. We refer to such a tarball as
a repackaged upstream source. Note that a repackaged upstream source is
different from a Debian-native package. A repackaged source still comes
with Debian-specific changes in a separate .diff.gz or
.debian.tar.{gz,bz2,xz} and still has a version number composed of
upstream-version and debian-version.

There may be cases where it is desirable to repackage the source even
though upstream distributes a .tar.{gz,bz2,xz} that could in
principle be used in its pristine form. The most obvious is if
significant space savings can be achieved by recompressing the tar
archive or by removing genuinely useless cruft from the upstream
archive. Use your own discretion here, but be prepared to defend your
decision if you repackage source that could have been pristine.

A repackaged .orig.tar.{gz,bz2,xz}

	should be documented in the resulting source package. Detailed
information on how the repackaged source was obtained, and on how
this can be reproduced should be provided in debian/copyright,
ideally in a way that can be done automatically with uscan [https://manpages.debian.org/uscan.1]. If that really doesn't work,
at least provide a get-orig-source target in your
debian/rules file that repeats the process, even though that
was actually deprecated in the 4.1.4 version of the Debian policy [https://www.debian.org/doc/debian-policy/upgrading-checklist.html#version-4-1-4].

	should not contain any file that does not come from the upstream
author(s), or whose contents has been changed by you. [2]

	should, except where impossible for legal reasons, preserve the
entire building and portability infrastructure provided by the
upstream author. For example, it is not a sufficient reason for
omitting a file that it is used only when building on MS-DOS.
Similarly, a Makefile provided by upstream should not be omitted
even if the first thing your debian/rules does is to overwrite it
by running a configure script.

(Rationale: It is common for Debian users who need to build
software for non-Debian platforms to fetch the source from a Debian
mirror rather than trying to locate a canonical upstream distribution
point).

	may use packagename-upstream-version+dfsg
(or any other suffix which is added to the tarball name) as
the name of the top-level directory in its tarball. This makes it
possible to distinguish pristine tarballs from repackaged ones.

	should be compressed with xz (or gzip or bzip) with maximal compression.

6.9.8.3. Changing binary files

Sometimes it is necessary to change binary files contained in the
original tarball, or to add binary files that are not in it. This is
fully supported when using source packages in “3.0 (quilt)” format; see
the dpkg-source1 manual page for details. When using the older format
“1.0”, binary files can't be stored in the .diff.gz so you must
store a uuencoded (or similar) version of the file(s) and decode
it at build time in debian/rules (and move it in its official
location).

6.9.9. Best practices for debug packages

A debug package is a package that contains additional information that
can be used by gdb. Since Debian binaries are stripped by default,
debugging information, including function names and line numbers, is
otherwise not available when running gdb on Debian binaries. Debug
packages allow users who need this additional debugging information to
install it without bloating a regular system with the information.

The debug packages contain separated debugging symbols that gdb can
find and load on the fly when debugging a program or library. The
convention in Debian is to keep these symbols in
/usr/lib/debug/path, where path is the path to the executable
or library. For example, debugging symbols for /usr/bin/foo go in
/usr/lib/debug/usr/bin/foo, and debugging symbols for
/usr/lib/libfoo.so.1 go in /usr/lib/debug/usr/lib/libfoo.so.1.

6.9.9.1. Automatically generated debug packages

Debug symbol packages can be generated automatically for any binary
package that contains executable binaries, and except for corner cases,
it should not be necessary to use the old manually generated ones
anymore. The package name for a automatic generated debug symbol package
ends in -dbgsym.

The dbgsym packages are not installed into the regular archives, but
in dedicated archives. That means, if you need the debug symbols for
debugging, you need to add this archives to your apt configuration and
then install the dbgsym package you are interested in. Please read
https://wiki.debian.org/HowToGetABacktrace on how to do that.

6.9.9.2. Manual -dbg packages

Before the advent of the automatic dbgsym packages, debug packages
needed to be manually generated. The name of a manual debug packages
ends in -dbg. It is recommended to migrate such old legacy packages
to the new dbgsym packages whenever possible. The procedure to
convert your package is described in
https://wiki.debian.org/AutomaticDebugPackages but the gist is to
use the --dbgsym-migration='pkgname-dbg (<< currentversion~)' switch
of the dh_strip command.

However, sometimes it is not possible to convert to the new dbgsym
packages, or you will encounter the old manual -dbg packages in the
archives, so you might need to deal with them. It is not recommended to
create manual -dbg packages for new packages, except if the automatic
ones won't work for some reason.

One reason could be that debug packages contains an entire special
debugging build of a library or other binary. However, usually
separating debugging information from the already built binaries is
sufficient and will also save space and build time.

This is the case, for example, for debugging symbols of Python
extensions. For now the right way to package Python extension debug
symbols is to use -dbg packages as described in
https://wiki.debian.org/Python/DbgBuilds.

To create -dbg packages, the package maintainer has to explicitly
specify them in debian/control.

The debugging symbols can be extracted from an object file using
objcopy --only-keep-debug. Then the object file can be stripped, and
objcopy --add-gnu-debuglink used to specify the path to the
debugging symbol file. objcopy 1 explains in detail how this works.

Note that the debug package should depend on the package that it
provides debugging symbols for, and this dependency should be versioned.
For example:

Depends: libfoo (= ${binary:Version})

The dh_strip command in debhelper supports creating debug
packages, and can take care of using objcopy to separate out the
debugging symbols for you. If your package uses debhelper/9.20151219
or newer, you don't need to do anything. debhelper will generate
debug symbol packages (as package-dbgsym) for you with no additional
changes to your source package.

6.9.10. Best practices for meta-packages

A meta-package is a mostly empty package that makes it easy to install a
coherent set of packages that can evolve over time. It achieves this by
depending on all the packages of the set. Thanks to the power of APT,
the meta-package maintainer can adjust the dependencies and the user's
system will automatically get the supplementary packages. The dropped
packages that were automatically installed will be also be marked as
removal candidates (and are even automatically removed by aptitude).
gnome and linux-image-amd64 are two examples of meta-packages
(built by the source packages meta-gnome2 and linux-latest).

The long description of the meta-package must clearly document its
purpose so that the user knows what they will lose if they remove the
package. Being explicit about the consequences is recommended. This is
particularly important for meta-packages that are installed during
initial installation and that have not been explicitly installed by the
user. Those tend to be important to ensure smooth system upgrades and
the user should be discouraged from uninstalling them to avoid potential
breakages.

[1]
We cannot prevent upstream authors from changing the tarball they
distribute without also incrementing the version number, so there can
be no guarantee that a pristine tarball is identical to what upstream
currently distributing at any point in time. All that can be
expected is that it is identical to something that upstream once
did distribute. If a difference arises later (say, if upstream
notices that they weren't using maximal compression in their original
distribution and then re-gzip it), that's just too bad. Since
there is no good way to upload a new .orig.tar.{gz,bz2,xz} for
the same version, there is not even any point in treating this
situation as a bug.

[2]
As a special exception, if the omission of non-free files would lead
to the source failing to build without assistance from the Debian
diff, it might be appropriate to instead edit the files, omitting
only the non-free parts of them, and/or explain the situation in a
README.source file in the root of the source tree. But in that
case please also urge the upstream author to make the non-free
components easier to separate from the rest of the source.

7. Beyond Packaging

Debian is about a lot more than just packaging software and maintaining
those packages. This chapter contains information about ways, often
really critical ways, to contribute to Debian beyond simply creating and
maintaining packages.

As a volunteer organization, Debian relies on the discretion of its
members in choosing what they want to work on and in choosing the most
critical thing to spend their time on.

7.1. Bug reporting

We encourage you to file bugs as you find them in Debian packages. In
fact, Debian developers are often the first line testers. Finding and
reporting bugs in other developers' packages improves the quality of
Debian.

Read the instructions for reporting
bugs [https://www.debian.org/Bugs/Reporting] in the Debian bug
tracking system [https://www.debian.org/Bugs/].

Try to submit the bug from a normal user account at which you are likely
to receive mail, so that people can reach you if they need further
information about the bug. Do not submit bugs as root.

You can use a tool like reportbug 1 to submit bugs. It can automate and
generally ease the process.

Make sure the bug is not already filed against a package. Each package
has a bug list easily reachable at
https://bugs.debian.org/packagename. Utilities like querybts 1
can also provide you with this information (and reportbug will
usually invoke querybts before sending, too).

Try to direct your bugs to the proper location. When for example your
bug is about a package which overwrites files from another package,
check the bug lists for both of those packages in order to avoid
filing duplicate bug reports.

For extra credit, you can go through other packages, merging bugs which
are reported more than once, or tagging bugs fixed when they have
already been fixed. Note that when you are neither the bug submitter nor
the package maintainer, you should not actually close the bug (unless
you secure permission from the maintainer).

From time to time you may want to check what has been going on with the
bug reports that you submitted. Take this opportunity to close those
that you can't reproduce anymore. To find out all the bugs you
submitted, you just have to visit
https://bugs.debian.org/from:your-email-addr.

7.1.1. Reporting lots of bugs at once (mass bug filing)

Reporting a great number of bugs for the same problem on a great number
of different packages — i.e., more than 10 — is a deprecated practice.
Take all possible steps to avoid submitting bulk bugs at all. For
instance, if checking for the problem can be automated, add a new check
to lintian so that an error or warning is emitted.

If you report more than 10 bugs on the same topic at once, it is
recommended that you send a message to debian-devel@lists.debian.org
describing your intention before submitting the report, and mentioning
the fact in the subject of your mail. This will allow other developers
to verify that the bug is a real problem. In addition, it will help
prevent a situation in which several maintainers start filing the same
bug report simultaneously.

Please use the programs dd-list and if appropriate whodepends
(from the package devscripts) to generate a list of all affected
packages, and include the output in your mail to
debian-devel@lists.debian.org.

Note that when sending lots of bugs on the same subject, you should send
the bug report to maintonly@bugs.debian.org so that the bug report
is not forwarded to the bug distribution mailing list.

The program mass-bug (from the package devscripts) can be used
to file bug reports against a list of packages.

7.1.1.1. Usertags

You may wish to use BTS usertags when submitting bugs across a number of
packages. Usertags are similar to normal tags such as 'patch' and
'wishlist' but differ in that they are user-defined and occupy a
namespace that is unique to a particular user. This allows multiple sets
of developers to 'usertag' the same bug in different ways without
conflicting.

To add usertags when filing bugs, specify the User and Usertags
pseudo-headers:

To: submit@bugs.debian.org
Subject: title-of-bug

Package: pkgname
[...]
User: email-addr
Usertags: tag-name [tag-name ...]

description-of-bug ...

Note that tags are separated by spaces and cannot contain underscores.
If you are filing bugs for a particular group or team it is recommended
that you set the User to an appropriate mailing list after
describing your intention there.

To view bugs tagged with a specific usertag, visit
https://bugs.debian.org/cgi-bin/pkgreport.cgi?users=email-addr&tag=tag-name.

7.2. Quality Assurance effort

7.2.1. Daily work

Even though there is a dedicated group of people for Quality Assurance,
QA duties are not reserved solely for them. You can participate in this
effort by keeping your packages as bug-free as possible, and as
lintian-clean (see lintian) as possible. If you do not find
that possible, then you should consider orphaning some of your packages
(see Orphaning a package). Alternatively, you may ask the help of other
people in order to catch up with the backlog of bugs that you have (you
can ask for help on debian-qa@lists.debian.org or
debian-devel@lists.debian.org). At the same time, you can look for
co-maintainers (see Collaborative maintenance).

7.2.2. Bug squashing parties

From time to time the QA group organizes bug squashing parties to get
rid of as many problems as possible. They are announced on
debian-devel-announce@lists.debian.org and the announcement explains
which area will be the focus of the party: usually they focus on release
critical bugs but it may happen that they decide to help finish a major
upgrade (like a new perl version that requires recompilation of all
the binary modules).

The rules for non-maintainer uploads differ during the parties because
the announcement of the party is considered prior notice for NMU. If you
have packages that may be affected by the party (because they have
release critical bugs for example), you should send an update to each of
the corresponding bug to explain their current status and what you
expect from the party. If you don't want an NMU, or if you're only
interested in a patch, or if you will deal with the bug yourself, please
explain that in the BTS.

People participating in the party have special rules for NMU; they can
NMU without prior notice if they upload their NMU to DELAYED/3-day at
least. All other NMU rules apply as usual; they should send the patch of
the NMU to the BTS (to one of the open bugs fixed by the NMU, or to a
new bug, tagged fixed). They should also respect any particular wishes
of the maintainer.

If you don't feel confident about doing an NMU, just send a patch to the
BTS. It's far better than a broken NMU.

7.3. Contacting other maintainers

During your lifetime within Debian, you will have to contact other
maintainers for various reasons. You may want to discuss a new way of
cooperating between a set of related packages, or you may simply remind
someone that a new upstream version is available and that you need it.

Looking up the email address of the maintainer for the package can be
distracting. Fortunately, there is a simple email alias,
package@packages.debian.org, which provides a way to email the
maintainer, whatever their individual email address (or addresses) may
be. Replace package with the name of a source or a binary package.

You may also be interested in contacting the persons who are subscribed
to a given source package via The Debian Package Tracker. You can do so by
using the package@packages.qa.debian.org email address.

7.4. Dealing with inactive and/or unreachable maintainers

If you notice that a package is lacking maintenance, you should make
sure that the maintainer is active and will continue to work on their
packages. It is possible that they are not active anymore, but haven't
registered out of the system, so to speak. On the other hand, it is also
possible that they just need a reminder.

There is a simple system (the MIA database) in which information about
maintainers who are deemed Missing In Action is recorded. When a member
of the QA group contacts an inactive maintainer or finds more
information about one, this is recorded in the MIA database. This system
is available in /org/qa.debian.org/mia on the host
qa.debian.org, and can be queried with the mia-query tool. Use
mia-query --help to see how to query the database. If you find that
no information has been recorded about an inactive maintainer yet, or
that you can add more information, you should generally proceed as
follows.

The first step is to politely contact the maintainer, and wait a
reasonable time for a response. It is quite hard to define reasonable
time, but it is important to take into account that real life is
sometimes very hectic. One way to handle this would be to send a
reminder after two weeks.

A non-functional e-mail address is a violation of Debian
Policy [https://www.debian.org/doc/debian-policy/ch-binary.html#the-maintainer-of-a-package].
If an e-mail "bounces", please file a bug against the package and submit
this information to the MIA database.

If the maintainer doesn't reply within four weeks (a month), one can
assume that a response will probably not happen. If that happens, you
should investigate further, and try to gather as much useful information
about the maintainer in question as possible. This includes:

	The echelon information available through the developers' LDAP
database [https://db.debian.org/], which indicates when the
developer last posted to a Debian mailing list. (This includes mails
about uploads distributed via the
debian-devel-changes@lists.debian.org list.) Also, remember to
check whether the maintainer is marked as on vacation in the
database.

	The number of packages this maintainer is responsible for, and the
condition of those packages. In particular, are there any RC bugs
that have been open for ages? Furthermore, how many bugs are there in
general? Another important piece of information is whether the
packages have been NMUed, and if so, by whom.

	Is there any activity of the maintainer outside of Debian? For
example, they might have posted something recently to non-Debian
mailing lists or news groups.

A bit of a problem are packages which were sponsored — the maintainer is
not an official Debian developer. The echelon information is not
available for sponsored people, for example, so you need to find and
contact the Debian developer who has actually uploaded the package.
Given that they signed the package, they're responsible for the upload
anyhow, and are likely to know what happened to the person they
sponsored.

It is also allowed to post a query to debian-devel@lists.debian.org,
asking if anyone is aware of the whereabouts of the missing maintainer.
Please Cc: the person in question.

Once you have gathered all of this, you can contact
mia@qa.debian.org. People on this alias will use the information you
provide in order to decide how to proceed. For example, they might
orphan one or all of the packages of the maintainer. If a package has
been NMUed, they might prefer to contact the NMUer before orphaning the
package — perhaps the person who has done the NMU is interested in the
package.

One last word: please remember to be polite. We are all volunteers and
cannot dedicate all of our time to Debian. Also, you are not aware of
the circumstances of the person who is involved. Perhaps they might be
seriously ill or might even have died — you do not know who may be on
the receiving side. Imagine how a relative will feel if they read the
e-mail of the deceased and find a very impolite, angry and accusing
message!

On the other hand, although we are volunteers, a package maintainer has
made a commitment and therefore has a responsibility to maintain the
package. So you can stress the importance of the greater good — if a
maintainer does not have the time or interest anymore, they should let
go and give the package to someone with more time and/or interest.

If you are interested in working on the MIA team, please have a look at
the README file in /org/qa.debian.org/mia on qa.debian.org,
where the technical details and the MIA procedures are documented, and
contact mia@qa.debian.org.

7.5. Interacting with prospective Debian developers

Debian's success depends on its ability to attract and retain new and
talented volunteers. If you are an experienced developer, we recommend
that you get involved with the process of bringing in new developers.
This section describes how to help new prospective developers.

7.5.1. Sponsoring packages

Sponsoring a package means uploading a package for a maintainer who is
not able to do it on their own. It's not a trivial matter; the sponsor
must verify the packaging and ensure that it is of the high level of
quality that Debian strives to have.

Debian Developers can sponsor packages. Debian Maintainers can't.

The process of sponsoring a package is:

	The maintainer prepares a source package (.dsc) and puts it
online somewhere (like on
mentors.debian.net [https://mentors.debian.net/cgi-bin/welcome])
or even better, provides a link to a public VCS repository (see
salsa.debian.org: Git repositories and collaborative development platform) where the package is maintained.

	The sponsor downloads (or checks out) the source package.

	The sponsor reviews the source package. If they find issues, they
inform the maintainer and ask them to provide a fixed version (the
process starts over at step 1).

	The sponsor could not find any remaining problem. They build the
package, sign it, and upload it to Debian.

Before delving into the details of how to sponsor a package, you should
ask yourself whether adding the proposed package is beneficial to
Debian.

There's no simple rule to answer this question; it can depend on many
factors: is the upstream codebase mature and not full of security holes?
Are there pre-existing packages that can do the same task and how do
they compare to this new package? Has the new package been requested by
users and how large is the user base? How active are the upstream
developers?

You should also ensure that the prospective maintainer is going to be a
good maintainer. Do they already have some experience with other
packages? If yes, are they doing a good job with them (check out some
bugs)? Are they familiar with the package and its programming language?
Do they have the skills needed for this package? If not, are they able
to learn them?

It's also a good idea to know where they stand with respect to Debian:
do they agree with Debian's philosophy and do they intend to join
Debian? Given how easy it is to become a Debian Member, you might want
to only sponsor people who plan to join. That way you know from the
start that you won't have to act as a sponsor indefinitely.

7.5.1.1. Sponsoring a new package

New maintainers usually have certain difficulties creating Debian
packages — this is quite understandable. They will make mistakes. That's
why sponsoring a brand new package into Debian requires a thorough
review of the Debian packaging. Sometimes several iterations will be
needed until the package is good enough to be uploaded to Debian. Thus
being a sponsor implies being a mentor.

Don't ever sponsor a new package without reviewing it. The review of new
packages done by ftpmasters mainly ensures that the software is really
free. Of course, it happens that they stumble on packaging problems but
they really should not. It's your task to ensure that the uploaded
package complies with the Debian Free Software Guidelines and is of good
quality.

Building the package and testing the software is part of the review, but
it's also not enough. The rest of this section contains a non-exhaustive
list of points to check in your review. [1]

	Verify that the upstream tarball provided is the same that has been
distributed by the upstream author (when the sources are repackaged
for Debian, generate the modified tarball yourself).

	Run lintian (see lintian). It will catch many common
problems. Be sure to verify that any lintian overrides set up by
the maintainer are fully justified.

	Run licensecheck (part of devscripts) and verify that
debian/copyright seems correct and complete. Look for license
problems (like files with “All rights reserved” headers, or with a
non-DFSG compliant license). grep -ri is your friend for this
task.

	Build the package with pbuilder (or any similar tool, see
pbuilder) to ensure that the build-dependencies are
complete.

	Proofread debian/control: does it follow the best practices (see
Best practices for debian/control)? Are the dependencies complete?

	Proofread debian/rules: does it follow the best practices (see
Best practices for debian/rules)? Do you see some possible improvements?

	Proofread the maintainer scripts (preinst, postinst,
prerm, postrm, config): will the preinst/postrm
work when the dependencies are not installed? Are all the scripts
idempotent (i.e. can you run them multiple times without
consequences)?

	Review any change to upstream files (either in .diff.gz, or in
debian/patches/ or directly embedded in the debian tarball
for binary files). Are they justified? Are they properly documented
(with DEP-3 [https://dep-team.pages.debian.net/deps/dep3/] for
patches)?

	For every file, ask yourself why the file is there and whether it's
the right way to achieve the desired result. Is the maintainer
following the best packaging practices (see
Best Packaging Practices)?

	Build the packages, install them and try the software. Ensure that
you can remove and purge the packages. Maybe test them with
piuparts.

If the audit did not reveal any problems, you can build the package and
upload it to Debian. Remember that even if you're not the maintainer, as
a sponsor you are still responsible for what you upload to Debian.
That's why you're encouraged to keep up with the package through
The Debian Package Tracker.

Note that you should not need to modify the source package to put your
name in the changelog or in the control file. The Maintainer
field of the control file and the changelog should list the
person who did the packaging, i.e. the sponsee. That way they will get
all the BTS mail.

Instead, you should instruct dpkg-buildpackage to use your key for
the signature. You do that with the -k option:

dpkg-buildpackage -kKEY-ID

If you use debuild and debsign, you can even configure it
permanently in ~/.devscripts:

DEBSIGN_KEYID=KEY-ID

7.5.1.2. Sponsoring an update of an existing package

You will usually assume that the package has already gone through a full
review. So instead of doing it again, you will carefully analyze the
difference between the current version and the new version prepared by
the maintainer. If you have not done the initial review yourself, you
might still want to have a deeper look just in case the initial reviewer
was sloppy.

To be able to analyze the difference, you need both versions. Download
the current version of the source package (with apt-get source) and
rebuild it (or download the current binary packages with
aptitude download). Download the source package to sponsor (usually
with dget).

Read the new changelog entry; it should tell you what to expect during
the review. The main tool you will use is debdiff (provided by the
devscripts package); you can run it with two source packages
(.dsc files), or two binary packages, or two .changes files (it
will then compare all the binary packages listed in the .changes).

If you compare the source packages (excluding upstream files in the case
of a new upstream version, for example by filtering the output of
debdiff with filterdiff -i '*/debian/*'), you must understand
all the changes you see and they should be properly documented in the
Debian changelog.

If everything is fine, build the package and compare the binary packages
to verify that the changes on the source package have no unexpected
consequences (some files dropped by mistake, missing dependencies,
etc.).

You might want to check out the Package Tracking System (see
The Debian Package Tracker) to verify if the maintainer has not missed
something important. Maybe there are translation updates sitting in the
BTS that could have been integrated. Maybe the package has been NMUed
and the maintainer forgot to integrate the changes from the NMU into
their package. Maybe there's a release critical bug that they have left
unhandled and that's blocking migration to testing. If you find
something that they could have done (better), it's time to tell them so
that they can improve for next time, and so that they have a better
understanding of their responsibilities.

If you have found no major problem, upload the new version. Otherwise
ask the maintainer to provide you a fixed version.

7.5.2. Granting upload permissions to DMs

After a Debian Maintainer's key has been added to the debian-maintainers
keyring, a Debian Developer may grant upload permissions to the DM for
specific packages by uploading a signed dak command to
ftp.upload.debian.org as described in the FTP-Master's announcement to
debian-devel [https://lists.debian.org/debian-devel-announce/2012/09/msg00008.html].

This process can be simplified with the help of the dcut command
from the dput-ng package. Note that this does not work with the
dcut command from the dput package!

For example:

dcut dm --uid 0xfedcba9876543210 --allow nano --deny bash

If the DM's key is not in the keyring package yet but in the DD's local
keyring, use the --force option and the fingerprint, without spaces
and, in this special case, without the 0x prefix and in all uppercase:

dcut --force dm --uid FEDCBA9876543210FEDCBA9876543210 --allow nano

7.5.3. Advocating new developers

See the page about advocating a prospective
developer [https://www.debian.org/devel/join/nm-advocate] at the
Debian web site.

7.5.4. Handling new maintainer applications

Please see Checklist for Application
Managers [https://www.debian.org/devel/join/nm-amchecklist] at the
Debian web site.

[1]
You can find more checks in the wiki, where several developers share
their own sponsorship
checklists [https://wiki.debian.org/SponsorChecklist].

8. Internationalization and Translations

Debian supports an ever-increasing number of natural languages. Even if
you are a native English speaker and do not speak any other language, it
is part of your duty as a maintainer to be aware of issues of
internationalization (abbreviated i18n because there are 18 letters
between the 'i' and the 'n' in internationalization). Therefore, even if
you are ok with English-only programs, you should read most of this
chapter.

According to Introduction to
i18n [https://www.debian.org/doc/manuals/intro-i18n/] from Tomohiro
KUBOTA, I18N (internationalization) means modification of software or
related technologies so that software can potentially handle multiple
languages, customs, and other differences, while L10N (localization)
means implementation of a specific language for
already-internationalized software.

l10n and i18n are interconnected, but the difficulties related to each
of them are very different. It's not really difficult to allow a program
to change the language in which texts are displayed based on user
settings, but it is very time consuming to actually translate these
messages. On the other hand, setting the character encoding is trivial,
but adapting the code to use several character encodings is a really
hard problem.

Setting aside the i18n problems, where no general guideline can be
given, there is actually no central infrastructure for l10n within
Debian which could be compared to the buildd mechanism for porting. So
most of the work has to be done manually.

8.1. How translations are handled within Debian

Handling translation of the texts contained in a package is still a
manual task, and the process depends on the kind of text you want to see
translated.

For program messages, the gettext infrastructure is used most of the
time. Often the translation is handled upstream within
projects like the Free Translation
Project [https://translationproject.org/html/welcome.html], the
GNOME Translation
Project [https://wiki.gnome.org/TranslationProject] or the KDE
Localization [https://l10n.kde.org/] project. The only centralized
resources within Debian are the Central Debian translation
statistics [https://www.debian.org/intl/l10n/], where you can find
some statistics about the translation files found in the actual
packages and download those files.

Package descriptions have translations since many years and Maintainers
don't need to do anything special to support translated package
descriptions; translators should use the Debian Description Translation
Project (DDTP) [https://ddtp.debian.org/].

For debconf templates, maintainers should use the po-debconf
package to ease the work of translators. Some statistics
can be found on the Central Debian
translation statistics [https://www.debian.org/intl/l10n/] site.

For web pages, each l10n team has access to the relevant VCS, and the
statistics are available from the Central Debian translation statistics
site.

For general documentation about Debian, the process is more or less the
same as for the web pages (the translators have access to the VCS), but
there are no statistics pages.

Another part of i18n work is package-specific documentation (man pages,
info documents, other formats). At least the man page translations are
po-based as most other things mentioned above.

8.2. I18N & L10N FAQ for maintainers

This is a list of problems that maintainers may face concerning i18n and
l10n. While reading this, keep in mind that there is no real consensus
on these points within Debian, and that this is only advice. If you have
a better idea for a given problem, or if you disagree on some points,
feel free to provide your feedback, so that this document can be
enhanced.

8.2.1. How to get a given text translated

To translate package descriptions, you have
nothing to do; the DDTP infrastructure will dispatch the material to
translate to volunteers with no need for interaction on your part.

For all other material (debconf templates, gettext files, man pages, or other
documentation), the best solution is to ask on debian-i18n for a translation in different
languages. Some translation team members are subscribed to this list,
and they will take care of the needed coordination, to get the material
translated and reviewed.
Once they are done, you will get your translated document from them in
your mailbox or via a wishlist bugreport.
It is also recommended, to use the po-debconf tools for i18n integration.

8.2.2. How to get a given translation reviewed

From time to time, individuals translate some texts in your package and
will ask you for inclusion of the translation in the package. This can
become problematic if you are not fluent in the given language. It is a
good idea to send the document to the corresponding l10n mailing list,
asking for a review. Once it has been done, you should feel more
confident in the quality of the translation, and feel safe to include it
in your package.

8.2.3. How to get a given translation updated

If you have some translations of a given text lying around, each time
you update the original, you should ask the previous translator to
update the translation with your new changes. Keep in mind that this
task takes time; at least one week to get the update reviewed and all.

If the translator is unresponsive, you may ask for help on the
corresponding l10n mailing list. If everything fails, don't forget to
put a warning in the translated document, stating that the translation
is somehow outdated, and that the reader should refer to the original
document if possible.

Avoid removing a translation completely because it is outdated. Old
documentation is often better than no documentation at all for
non-English speakers.

8.2.4. How to handle a bug report concerning a translation

The best solution may be to mark the bug as forwarded to upstream, and
forward it to both the previous translator and their team (using the
corresponding debian-l10n-XXX mailing list).

8.3. I18N & L10N FAQ for translators

While reading this, please keep in mind that there is no general
procedure within Debian concerning these points, and that in any case,
you should collaborate with your team and the package maintainer.

8.3.1. How to help the translation effort

Choose what you want to translate, make sure that nobody is already
working on it (using your debian-l10n-XXX mailing list), translate it,
get it reviewed by other native speakers on your l10n mailing list, and
provide it to the maintainer of the package (see next point).

8.3.2. How to provide a translation for inclusion in a package

Make sure your translation is correct (asking for review on your l10n
mailing list) before providing it for inclusion. It will save time for
everyone, and avoid the chaos resulting in having several versions of
the same document in bug reports.

The best solution is to file a regular bug containing the translation
against the package. Make sure to use both the patch and l10n
tags, and to not use a severity higher than 'wishlist', since the lack
of translation never prevented a program from running.

8.4. Best current practice concerning l10n

	As a maintainer, never edit the translations in any way (even to
reformat the layout) without asking on the corresponding l10n mailing
list. You risk for example breaking the encoding of the file by doing
so. Moreover, what you consider an error can be right (or even
needed) in the given language.

	As a translator, if you find an error in the original text, make sure
to report it. Translators are often the most attentive readers of a
given text, and if they don't report the errors they find, nobody
will.

	In any case, remember that the major issue with l10n is that it
requires several people to cooperate, and that it is very easy to
start a flamewar about small problems because of misunderstandings.
So if you have problems with your interlocutor, ask for help on the
corresponding l10n mailing list, on debian-i18n, or even on
debian-devel (but beware, l10n discussions very often become
flamewars on that list :)

	In any case, cooperation can only be achieved with mutual
respect.

1. Overview of Debian Maintainer Tools

This section contains a rough overview of the tools available to
maintainers. The following is by no means complete or definitive, but
just a guide to some of the more popular tools.

Debian maintainer tools are meant to aid developers and free their time
for critical tasks. As Larry Wall says, there's more than one way to do
it.

Some people prefer to use high-level package maintenance tools and some
do not. Debian is officially agnostic on this issue; any tool that gets
the job done is fine. Therefore, this section is not meant to stipulate
to anyone which tools they should use or how they should go about their
duties of maintainership. Nor is it meant to endorse any particular tool
to the exclusion of a competing tool.

Most of the descriptions of these packages come from the actual package
descriptions themselves. Further information can be found in the package
documentation itself. You can also see more info with the command
apt-cache show package-name.

1.1. Core tools

The following tools are pretty much required for any maintainer.

1.1.1. dpkg-dev

dpkg-dev contains the tools (including dpkg-source) required to
unpack, build, and upload Debian source packages. These utilities
contain the fundamental, low-level functionality required to create and
manipulate packages; as such, they are essential for any Debian
maintainer.

1.1.2. debconf

debconf provides a consistent interface to configuring packages
interactively. It is user interface independent, allowing end-users to
configure packages with a text-only interface, an HTML interface, or a
dialog interface. New interfaces can be added as modules.

You can find documentation for this package in the debconf-doc
package.

Many feel that this system should be used for all packages that require
interactive configuration; see Configuration management with debconf. debconf
is not currently required by Debian Policy, but that may change in the
future.

1.1.3. fakeroot

fakeroot simulates root privileges. This enables you to build
packages without being root (packages usually want to install files with
root ownership). If you have fakeroot installed,
dpkg-buildpackage will use it automatically.

1.2. Package lint tools

According to the Free On-line Dictionary of Computing (FOLDOC), lint
is: "A Unix C language processor which carries out more thorough checks
on the code than is usual with C compilers." Package lint tools help
package maintainers by automatically finding common problems and policy
violations in their packages.

1.2.1. lintian

lintian dissects Debian packages and emits information about bugs
and policy violations. It contains automated checks for many aspects of
Debian policy as well as some checks for common errors.

You should periodically get the newest lintian from unstable and
check over all your packages. Notice that the -i option provides
detailed explanations of what each error or warning means, what its
basis in Policy is, and commonly how you can fix the problem.

Refer to Testing the package for more information on how and when to
use Lintian.

You can also see a summary of all problems reported by Lintian on your
packages at https://lintian.debian.org/. These reports contain
the latest lintian output for the whole development distribution
(unstable).

1.2.2. lintian-brush

lintian-brush contains a set of scripts that can automatically
fix more than 80 common lintian issues in Debian packages.

It comes with a wrapper script that invokes the scripts, updates
the changelog (if desired) and commits each change to version control.

1.2.3. piuparts

piuparts is the .deb package installation, upgrading, and removal
testing tool.

piuparts tests that .deb packages handle installation, upgrading,
and removal correctly. It does this by creating a minimal Debian
installation in a chroot, and installing, upgrading, and removing packages
in that environment, and comparing the state of the directory tree before
and after. piuparts reports any files that have been added, removed,
or modified during this process.

piuparts is meant as a quality assurance tool for people who create
.deb packages to test them before they upload them to the Debian
archive.

1.2.4. debdiff

debdiff (from the devscripts package, devscripts)
compares file lists and control files of two packages. It is a simple
regression test, as it will help you notice if the number of binary
packages has changed since the last upload, or if something has changed
in the control file. Of course, some of the changes it reports will be
all right, but it can help you prevent various accidents.

You can run it over a pair of binary packages:

debdiff package_1-1_arch.deb package_2-1_arch.deb

Or even a pair of changes files:

debdiff package_1-1_arch.changes package_2-1_arch.changes

For more information please see debdiff 1.

1.2.5. diffoscope

diffoscope provides in-depth comparison of files, archives, and directories.

diffoscope will try to get to the bottom of what makes files or directories
different. It will recursively unpack archives of many kinds and transform
various binary formats into more human readable form to compare them.

Originally developed to compare two .deb files or two changes files
nowadays it can compare two tarballs, ISO images, or PDF just as easily and
supports a huge variety of filetypes.

The differences can be shown in a text or HTML report or as JSON output.

1.2.6. duck

duck, the Debian Url ChecKer, processes several fields in the
debian/control, debian/upstream, debian/copyright,
debian/patches/* and systemd.unit files and checks if URLs,
VCS links and email address domains found therein are valid.

1.2.7. adequate

adequate checks packages installed on the system and reports bugs
and policy violations.

The following checks are currently implemented:

	broken symlinks

	missing copyright file

	obsolete conffiles

	Python modules not byte-compiled

	/bin and /sbin binaries requiring /usr/lib libraries

	missing libraries, undefined symbols, symbol size mismatches

	license conflicts

	program name collisions

	missing alternatives

	missing binfmt interpreters and detectors

	missing pkg-config dependencies

1.2.8. i18nspector

i18nspector is a tool for checking translation templates (POT), message
catalogues (PO) and compiled message catalogues (MO) files for common problems.

1.2.9. cme

cme is a tool from the libconfig-model-dpkg-perl package is an editor
for dpkg source files with validation. Check the package description to see
what it can do.

1.2.10. licensecheck

licensecheck attempts to determine the license that applies to each
file passed to it, by searching the start of the file for text belonging
to various licenses.

1.2.11. blhc

blhc is a tool which checks build logs for missing hardening flags.

1.3. Helpers for debian/rules

Package building tools make the process of writing debian/rules
files easier. See Helper scripts for more information about
why these might or might not be desired.

1.3.1. debhelper

debhelper is a collection of programs that can be used in
debian/rules to automate common tasks related to building binary
Debian packages. debhelper includes programs to install various
files into your package, compress files, fix file permissions, and
integrate your package with the Debian menu system.

Unlike some approaches, debhelper is broken into several small,
simple commands, which act in a consistent manner. As such, it allows
more fine-grained control than some of the other debian/rules tools.

There are a number of little debhelper add-on packages, too
transient to document. You can see the list of most of them by doing
apt-cache search ^dh-.

When choosing a debhelper compatibility level for your package, you
should choose the highest compatibility level that is supported in the
most recent stable release. Only use a higher compatibility level if you
need specific features that are provided by that compatibility level
that are not available in earlier levels.

In the past the compatibility level was defined in debian/compat,
however nowadays it is much better to not use that but rather to use a
versioned build-dependency like debhelper-compat (=12).

1.3.2. dh-make

The dh-make package contains dh_make, a program that creates a
skeleton of files necessary to build a Debian package out of a source
tree. As the name suggests, dh_make is a rewrite of debmake, and
its template files use dh_* programs from debhelper.

While the rules files generated by dh_make are in general a
sufficient basis for a working package, they are still just the
groundwork: the burden still lies on the maintainer to finely tune the
generated files and make the package entirely functional and
Policy-compliant.

1.3.3. equivs

equivs is another package for making packages. It is often suggested
for local use if you need to make a package simply to fulfill
dependencies. It is also sometimes used when making meta-packages,
which are packages whose only purpose is to depend on other packages.

1.4. Package builders

The following packages help with the package building process, general
driving of dpkg-buildpackage, as well as handling supporting tasks.

1.4.1. git-buildpackage

git-buildpackage provides the capability to inject or import Debian
source packages into a Git repository, build a Debian package from the
Git repository, and helps in integrating upstream changes into the
repository.

These utilities provide an infrastructure to facilitate the use of Git
by Debian maintainers. This allows one to keep separate Git branches of
a package for stable, unstable and possibly experimental
distributions, along with the other benefits of a version control
system.

1.4.2. debootstrap

The debootstrap package and script allows you to bootstrap a Debian
base system into any part of your filesystem. By base system, we mean
the bare minimum of packages required to operate and install the rest of
the system.

Having a system like this can be useful in many ways. For instance, you
can chroot into it if you want to test your build dependencies. Or
you can test how your package behaves when installed into a bare base
system. Chroot builders use this package; see below.

1.4.3. pbuilder

pbuilder constructs a chrooted system, and builds a package inside
the chroot. It is very useful to check that a package's build
dependencies are correct, and to be sure that unnecessary and wrong
build dependencies will not exist in the resulting package.

A related package is cowbuilder, which speeds up the build process
using a COW filesystem on any standard Linux filesystem.

1.4.4. sbuild

sbuild is another automated builder. It can use chrooted
environments as well. It can be used stand-alone, or as part of a
networked, distributed build environment. As the latter, it is part of
the system used by porters to build binary packages for all the
available architectures. See wanna-build for more
information, and https://buildd.debian.org/ to see the system in
action.

1.5. Package uploaders

The following packages help automate or simplify the process of
uploading packages into the official archive.

1.5.1. dupload

dupload is a package and a script to automatically upload Debian
packages to the Debian archive, to log the upload, and to optionally send
mail about the upload of a package. It supports various kinds of hooks to
extend its functionality, and can be configured for new upload locations
or methods, although by default it provides various hooks performing checks
and comes configured with all Debian upload locations.

1.5.2. dput

The dput package and script do much the same thing as dupload,
but in a different way. Out of the box it supports to run dinstall
in dry-run mode after the upload.

1.5.3. dcut

The dcut script (part of the package dput, dput) helps
in removing files from the ftp upload directory.

1.6. Maintenance automation

The following tools help automate different maintenance tasks, from
adding changelog entries or signature lines and looking up bugs in Emacs
to making use of the newest and official config.sub.

1.6.1. devscripts

devscripts is a package containing wrappers and tools that are very
helpful for maintaining your Debian packages. Example scripts include
debchange (or its alias, dch), which manipulates your
debian/changelog file from the command-line, and debuild, which
is a wrapper around dpkg-buildpackage. The bts utility is also
very helpful to update the state of bug reports on the command line.
uscan can be used to watch for new upstream versions of your
packages (see https://wiki.debian.org/debian/watch for more info on that).
suspicious-source outputs a list of files which are not common source
files.

See the devscripts 1 manual page for a complete list of available
scripts.

1.6.2. reportbug

reportbug is a tool designed to make the reporting of bugs in Debian
and derived distributions relatively painless. Its features include:

	Integration with mutt and mh/nmh mail readers.

	Access to outstanding bug reports to make it easier to identify
whether problems have already been reported.

	Automatic checking for newer versions of packages.

reportbug is designed to be used on systems with an installed mail
transport agent; however, you can edit the configuration file and send
reports using any available mail server.

This package also includes the querybts script for browsing the
Debian bug tracking system [https://www.debian.org/Bugs/].

1.6.3. autotools-dev

autotools-dev contains best practices for people who maintain
packages that use autoconf and/or automake. Also contains
canonical config.sub and config.guess files, which are known to
work on all Debian ports.

1.6.4. dpkg-repack

dpkg-repack creates a Debian package file out of a package that has
already been installed. If any changes have been made to the package
while it was unpacked (e.g., files in /etc were modified), the new
package will inherit the changes.

This utility can make it easy to copy packages from one computer to
another, or to recreate packages that are installed on your system but
no longer available elsewhere, or to save the current state of a package
before you upgrade it.

1.6.5. alien

alien converts binary packages between various packaging formats,
including Debian, RPM (RedHat), LSB (Linux Standard Base), Solaris, and
Slackware packages.

1.6.6. dpkg-dev-el

dpkg-dev-el is an Emacs lisp package that provides assistance when
editing some of the files in the debian directory of your package.
For instance, there are handy functions for listing a package's current
bugs, and for finalizing the latest entry in a debian/changelog
file.

1.6.7. dpkg-depcheck

dpkg-depcheck (from the devscripts package, devscripts)
runs a command under strace to determine all the packages that were
used by the said command.

For Debian packages, this is useful when you have to compose a
Build-Depends line for your new package: running the build process
through dpkg-depcheck will provide you with a good first
approximation of the build-dependencies. For example:

dpkg-depcheck -b debian/rules build

dpkg-depcheck can also be used to check for run-time dependencies,
especially if your package uses exec 2 to run other programs.

For more information please see dpkg-depcheck 1.

1.6.8. debputy

The debputy tools is new since 2024. While its main purpose is to offer a
new Debian package build paradigm, it includes subcommands that can be used on
any existing Debian package to validate the correctness of most of the files in
debian/*, and in many cases also automatically fix them.

To check correctness of files in debian/* run:

debputy lint --spellcheck

To format debian/control and debian/tests/control files

debputy reformat --style black

Using the reformat command obsoletes using wrap-and-sort -ast.

The debputy tool also includes a language server which, when integrated with a
code editor, can give real-time feedback on the correctness of files in
debian/* while editing them.

For more information please see debputy 1.

1.7. Porting tools

The following tools are helpful for porters and for cross-compilation.

1.7.1. dpkg-cross

dpkg-cross is a tool for installing libraries and headers for
cross-compiling in a way similar to dpkg. Furthermore, the
functionality of dpkg-buildpackage and dpkg-shlibdeps is
enhanced to support cross-compiling.

1.8. Documentation and information

The following packages provide information for maintainers or help with
building documentation.

1.8.1. debian-policy

The debian-policy package contains the Debian Policy Manual
and related documents, which are:

	Debian Policy Manual

	Filesystem Hierarchy Standard (FHS)

	Debian Menu sub-policy

	Debian Perl sub-policy

	Debian configuration management specification

	Machine-readable debian/copyright specification

	Autopkgtest - automatic as-installed package testing

	Authoritative list of virtual package names

	Policy checklist for upgrading your packages

The Debian Policy Manual the policy relating to packages and details of
the packaging mechanism. It covers everything from required gcc
options to the way the maintainer scripts (postinst etc.) work,
package sections and priorities, etc.

Also useful is the file
/usr/share/doc/debian-policy/upgrading-checklist.txt.gz,
which lists changes between versions of policy.

1.8.2. doc-debian

doc-debian contains lots of useful Debian-specific documentation:

	Debian Linux Manifesto

	Constitution for the Debian Project

	Debian Social Contract

	Debian Free Software Guidelines

	Debian Bug Tracking System documentation

	Introduction to the Debian mailing lists

1.8.3. developers-reference

The developers-reference package contains the document you are
reading right now, the Debian Developer's Reference, a set of
guidelines and best practices which has been established by and for
the community of Debian developers.

1.8.4. maint-guide

The maint-guide package contains the Debian New Maintainers' Guide.

This document tries to describe the building of a Debian package to
ordinary Debian users and prospective developers. It uses fairly
non-technical language, and it's well covered with working examples.

1.8.5. debmake-doc

The debmake-doc package contains the Guide for Debian Maintainers.

This document is newer than Debian New Maintainers' Guide and intends to replace
it. The Guide for Debian Maintainers caters to those learning Debian packaging
and covers a wide range of topics and tools, along with plenty of examples about
various types of packaging issues.

1.8.6. packaging-tutorial

This tutorial is an introduction to Debian packaging. It teaches
prospective developers how to modify existing packages, how to create
their own packages, and how to interact with the Debian community.

In addition to the main tutorial, it includes three practical sessions
on modifying the grep package, and packaging the gnujump game
and a Java library.

1.8.7. how-can-i-help

how-can-i-help shows opportunities for contributing to Debian.
how-can-i-help hooks into APT to list opportunities for contributions to
Debian (orphaned packages, bugs tagged 'newcomer') for packages installed
locally, after each APT invocation. It can also be invoked directly, and
then lists all opportunities for contribution (not just the new ones).

1.8.8. docbook-xml

docbook-xml provides the DocBook XML DTDs, which are commonly used
for Debian documentation (as is the older debiandoc SGML DTD).

The docbook-xsl package provides the XSL files for building and
styling the source to various output formats. You will need an XSLT
processor, such as xsltproc, to use the XSL stylesheets.
Documentation for the stylesheets can be found in the various
docbook-xsl-doc-* packages.

To produce PDF from FO, you need an FO processor, such as xmlroff or
fop. Another tool to generate PDF from DocBook XML is dblatex.

1.8.9. debiandoc-sgml

debiandoc-sgml provides the DebianDoc SGML DTD, which has been
commonly used for Debian documentation, but is now deprecated
(docbook-xml or python3-sphinx should be used instead).

1.8.10. debian-keyring

Contains the public OpenPGP keys of Debian Developers and Maintainers. See
Maintaining your public key and the package documentation for more information.

1.8.11. debian-el

debian-el provides an Emacs mode for viewing Debian binary packages.
This lets you examine a package without unpacking it.

Index

 nav.xhtml

 Table of Contents

 		
 Debian Developer's Reference

 		
 Scope of This Document

 		
 Applying to Become a Member

 		
 Getting started

 		
 Debian mentors and sponsors

 		
 Registering as a Debian member

 		
 Debian Developer's Duties

 		
 Package Maintainer's Duties

 		
 Work towards the next stable release

 		
 Maintain packages in stable

 		
 Manage release-critical bugs

 		
 Coordination with upstream developers

 		
 Administrative Duties

 		
 Maintaining your Debian information

 		
 Maintaining your public key

 		
 Voting

 		
 Going on vacation gracefully

 		
 Retiring

 		
 Returning after retirement

 		
 Resources for Debian Members

 		
 Mailing lists

 		
 Basic rules for use

 		
 Core development mailing lists

 		
 Special lists

 		
 Requesting new development-related lists

 		
 IRC channels

 		
 Documentation

 		
 Debian machines

 		
 The bugs server

 		
 The ftp-master server

 		
 The www-master server

 		
 The people web server

 		
 salsa.debian.org: Git repositories and collaborative development platform

 		
 GitHub.com: Submitting pull requests to upstream repositories

 		
 chroots to different distributions

 		
 The Developers Database

 		
 The Debian archive

 		
 Sections

 		
 Architectures

 		
 Packages

 		
 Distributions

 		
 Release code names

 		
 Debian mirrors

 		
 The Incoming system

 		
 Package information

 		
 On the web

 		
 The dak ls utility

 		
 The Debian Package Tracker

 		
 Developer's packages overview

 		
 Debian's FusionForge installation: Alioth

 		
 Goodies for Debian Members

 		
 Managing Packages

 		
 New packages

 		
 Recording changes in the package

 		
 Testing the package

 		
 Layout of the source package

 		
 Picking a distribution

 		
 Special case: uploads to the stable and oldstable distributions

 		
 Special case: the stable-updates suite

 		
 Special case: uploads to testing/testing-proposed-updates

 		
 Uploading a package

 		
 Source and binary uploads

 		
 Uploading to ftp-master

 		
 Delayed uploads

 		
 Security uploads

 		
 Other upload queues

 		
 Notifications

 		
 Specifying the package section, subsection and priority

 		
 Handling bugs

 		
 Monitoring bugs

 		
 Responding to bugs

 		
 Bug housekeeping

 		
 When bugs are closed by new uploads

 		
 Handling security-related bugs

 		
 Moving, removing, renaming, orphaning, adopting, and reintroducing packages

 		
 Moving packages

 		
 Removing packages

 		
 Replacing or renaming packages

 		
 Orphaning a package

 		
 Adopting a package

 		
 Reintroducing packages

 		
 Porting and being ported

 		
 Being kind to porters

 		
 Guidelines for porter uploads

 		
 Porting infrastructure and automation

 		
 When your package is not portable

 		
 Marking non-free packages as auto-buildable

 		
 Non-Maintainer Uploads (NMUs)

 		
 When and how to do an NMU

 		
 NMUs and debian/changelog

 		
 Using the DELAYED/ queue

 		
 NMUs from the maintainer's point of view

 		
 Source NMUs vs Binary-only NMUs (binNMUs)

 		
 NMUs vs QA uploads

 		
 NMUs vs team uploads

 		
 Package Salvaging

 		
 When a package is eligible for package salvaging

 		
 How to salvage a package

 		
 Collaborative maintenance

 		
 The testing distribution

 		
 Basics

 		
 Updates from unstable

 		
 Direct updates to testing

 		
 Frequently asked questions

 		
 The Stable backports archive

 		
 Basics

 		
 Exception to the testing-first rule

 		
 Who can maintain packages in the stable-backports archive?

 		
 When can one start uploading to stable-backports?

 		
 How long must a package be maintained when uploaded to stable-backports?

 		
 How often shall one upload to stable-backports?

 		
 How can one learn more about backporting?

 		
 Best Packaging Practices

 		
 Best practices for debian/rules

 		
 Helper scripts

 		
 Multiple binary packages

 		
 Best practices for debian/control

 		
 General guidelines for package descriptions

 		
 The package synopsis, or short description

 		
 The long description

 		
 Upstream home page

 		
 Version Control System location

 		
 Best practices for debian/changelog

 		
 Writing useful changelog entries

 		
 Selecting the upload urgency

 		
 Common misconceptions about changelog entries

 		
 Common errors in changelog entries

 		
 Supplementing changelogs with NEWS.Debian files

 		
 Best practices around security

 		
 Best practices for maintainer scripts

 		
 Configuration management with debconf

 		
 Do not abuse debconf

 		
 General recommendations for authors and translators

 		
 Templates fields definition

 		
 Template fields specific style guide

 		
 Internationalization

 		
 Handling debconf translations

 		
 Internationalized documentation

 		
 Best practices for debian/patches

 		
 Common packaging situations

 		
 Packages using autoconf/automake

 		
 Libraries

 		
 Documentation

 		
 Specific types of packages

 		
 Architecture-independent data

 		
 Needing a certain locale during build

 		
 Make transition packages deborphan compliant

 		
 Best practices for .orig.tar.{gz,bz2,xz} files

 		
 Best practices for debug packages

 		
 Best practices for meta-packages

 		
 Beyond Packaging

 		
 Bug reporting

 		
 Reporting lots of bugs at once (mass bug filing)

 		
 Quality Assurance effort

 		
 Daily work

 		
 Bug squashing parties

 		
 Contacting other maintainers

 		
 Dealing with inactive and/or unreachable maintainers

 		
 Interacting with prospective Debian developers

 		
 Sponsoring packages

 		
 Granting upload permissions to DMs

 		
 Advocating new developers

 		
 Handling new maintainer applications

 		
 Internationalization and Translations

 		
 How translations are handled within Debian

 		
 I18N & L10N FAQ for maintainers

 		
 How to get a given text translated

 		
 How to get a given translation reviewed

 		
 How to get a given translation updated

 		
 How to handle a bug report concerning a translation

 		
 I18N & L10N FAQ for translators

 		
 How to help the translation effort

 		
 How to provide a translation for inclusion in a package

 		
 Best current practice concerning l10n

 		
 Overview of Debian Maintainer Tools

 		
 Core tools

 		
 dpkg-dev

 		
 debconf

 		
 fakeroot

 		
 Package lint tools

 		
 lintian

 		
 lintian-brush

 		
 piuparts

 		
 debdiff

 		
 diffoscope

 		
 duck

 		
 adequate

 		
 i18nspector

 		
 cme

 		
 licensecheck

 		
 blhc

 		
 Helpers for debian/rules

 		
 debhelper

 		
 dh-make

 		
 equivs

 		
 Package builders

 		
 git-buildpackage

 		
 debootstrap

 		
 pbuilder

 		
 sbuild

 		
 Package uploaders

 		
 dupload

 		
 dput

 		
 dcut

 		
 Maintenance automation

 		
 devscripts

 		
 reportbug

 		
 autotools-dev

 		
 dpkg-repack

 		
 alien

 		
 dpkg-dev-el

 		
 dpkg-depcheck

 		
 debputy

 		
 Porting tools

 		
 dpkg-cross

 		
 Documentation and information

 		
 debian-policy

 		
 doc-debian

 		
 developers-reference

 		
 maint-guide

 		
 debmake-doc

 		
 packaging-tutorial

 		
 how-can-i-help

 		
 docbook-xml

 		
 debiandoc-sgml

 		
 debian-keyring

 		
 debian-el

_static/file.png

_static/minus.png

_static/plus.png

